SyedHasanCronosPMC's picture
Update app.py
6f68fde verified
raw
history blame
3.29 kB
import gradio as gr
import os
from langgraph.graph import StateGraph
from langgraph.prebuilt import MessagesState, START, END, create_react_agent
from langgraph.types import Command
from langchain_core.messages import HumanMessage
from langchain_anthropic import ChatAnthropic
# Set Anthropic API key from Hugging Face secret environment
os.environ["ANTHROPIC_API_KEY"] = os.getenv("ANTHROPIC_API_KEY")
# Initialize Claude 3.5 Sonnet LLM
llm = ChatAnthropic(model="claude-3-5-sonnet-latest")
# System prompt template function
def make_system_prompt(suffix: str) -> str:
return (
"You are a helpful AI assistant, collaborating with other assistants."
" Use the provided tools to progress towards answering the question."
" If you are unable to fully answer, that's OK, another assistant with different tools "
" will help where you left off. Execute what you can to make progress."
" If you or any of the other assistants have the final answer or deliverable,"
" prefix your response with FINAL ANSWER so the team knows to stop."
f"\n{suffix}"
)
# Research agent logic
def research_node(state: MessagesState) -> Command[str]:
agent = create_react_agent(
llm,
tools=[],
state_modifier=make_system_prompt("You can only do research.")
)
result = agent.invoke(state)
goto = END if "FINAL ANSWER" in result["messages"][-1].content else "chart_generator"
result["messages"][-1] = HumanMessage(
content=result["messages"][-1].content, name="researcher"
)
return Command(update={"messages": result["messages"]}, goto=goto)
# Chart generator logic
def chart_node(state: MessagesState) -> Command[str]:
agent = create_react_agent(
llm,
tools=[],
state_modifier=make_system_prompt("You can only generate charts.")
)
result = agent.invoke(state)
goto = END if "FINAL ANSWER" in result["messages"][-1].content else "researcher"
result["messages"][-1] = HumanMessage(
content=result["messages"][-1].content, name="chart_generator"
)
return Command(update={"messages": result["messages"]}, goto=goto)
# Build the LangGraph workflow
workflow = StateGraph(MessagesState)
workflow.add_node("researcher", research_node)
workflow.add_node("chart_generator", chart_node)
workflow.add_edge(START, "researcher")
workflow.add_edge("researcher", "chart_generator")
workflow.add_edge("chart_generator", END)
graph = workflow.compile()
# Function to execute LangGraph flow
def run_langgraph(user_input):
events = graph.stream(
{"messages": [("user", user_input)]},
{"recursion_limit": 150}
)
output = []
for event in events:
output.append(event)
return output[-1]["messages"][-1].content if output else "No output generated"
# Gradio interface logic
def process_input(user_input):
return run_langgraph(user_input)
# Launch Gradio app
interface = gr.Interface(
fn=process_input,
inputs="text",
outputs="text",
title="LangGraph Research Automation",
description="Enter your research task (e.g., 'Get GDP data for the USA over the past 5 years and create a chart.')"
)
if __name__ == "__main__":
interface.launch(server_name="0.0.0.0", server_port=7860)