Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
from langgraph.graph import StateGraph, END | |
from langgraph.prebuilt.tool_executor import ToolExecutor | |
from langgraph.prebuilt.react import create_react_plan_and_execute | |
from langgraph.checkpoint.sqlite import SqliteSaver | |
from langgraph.graph.message import add_messages | |
from langchain_core.messages import HumanMessage | |
from langchain_anthropic import ChatAnthropic | |
# Load API Key securely | |
os.environ["ANTHROPIC_API_KEY"] = os.getenv("ANTHROPIC_API_KEY") | |
# Define the LLM (Claude 3.5 Sonnet) | |
llm = ChatAnthropic(model="claude-3-5-sonnet-latest") | |
# System prompt modifier | |
def make_system_prompt(suffix: str) -> str: | |
return ( | |
"You are a helpful AI assistant, collaborating with other assistants." | |
" Use the provided tools to progress toward answering the question." | |
" If you cannot fully answer, another assistant will continue where you left off." | |
" If you or the team has a complete answer, prefix it with FINAL ANSWER.\n" | |
f"{suffix}" | |
) | |
# Node 1: Research assistant logic | |
def research_node(state: dict) -> dict: | |
messages = state.get("messages", []) | |
prompt = make_system_prompt("You can only do research.") | |
executor = create_react_plan_and_execute(llm=llm, tools=[], system_prompt=prompt) | |
response = executor.invoke(messages) | |
messages.append(HumanMessage(content=response.content, name="researcher")) | |
next_node = "chart_generator" if "FINAL ANSWER" not in response.content else END | |
return {"messages": messages, "next": next_node} | |
# Node 2: Chart assistant logic | |
def chart_node(state: dict) -> dict: | |
messages = state.get("messages", []) | |
prompt = make_system_prompt("You can only generate charts.") | |
executor = create_react_plan_and_execute(llm=llm, tools=[], system_prompt=prompt) | |
response = executor.invoke(messages) | |
messages.append(HumanMessage(content=response.content, name="chart_generator")) | |
return {"messages": messages, "next": END} | |
# Define LangGraph flow | |
workflow = StateGraph(dict) | |
workflow.add_node("researcher", research_node) | |
workflow.add_node("chart_generator", chart_node) | |
workflow.set_entry_point("researcher") | |
workflow.set_finish_point(END) | |
workflow.add_conditional_edges("researcher", lambda x: x["next"]) | |
workflow.add_edge("chart_generator", END) | |
graph = workflow.compile() | |
# Function to run the graph and optionally return chart | |
def run_langgraph(input_text): | |
try: | |
events = graph.stream({"messages": [HumanMessage(content=input_text)]}) | |
output = list(events)[-1] | |
final_content = output["messages"][-1].content | |
if "FINAL ANSWER" in final_content: | |
# Example static chart | |
years = [2020, 2021, 2022, 2023, 2024] | |
gdp = [21.4, 22.0, 23.1, 24.8, 26.2] | |
plt.figure() | |
plt.plot(years, gdp, marker="o") | |
plt.title("USA GDP Over Last 5 Years") | |
plt.xlabel("Year") | |
plt.ylabel("GDP in Trillions") | |
plt.grid(True) | |
plt.tight_layout() | |
plt.savefig("gdp_chart.png") | |
return "Chart generated based on FINAL ANSWER", "gdp_chart.png" | |
else: | |
return final_content, None | |
except Exception as e: | |
return f"Error: {str(e)}", None | |
# Gradio Interface | |
def process_input(user_input): | |
return run_langgraph(user_input) | |
interface = gr.Interface( | |
fn=process_input, | |
inputs=gr.Textbox(label="Enter your research task"), | |
outputs=[gr.Textbox(label="Output"), gr.Image(type="filepath", label="Chart")], | |
title="LangGraph Research Automation", | |
description="Enter a research prompt and view chart output when applicable." | |
) | |
if __name__ == "__main__": | |
interface.launch() | |