SyedHasanCronosPMC's picture
Update app.py
b524645 verified
import os
import gradio as gr
from langchain.document_loaders import PyPDFLoader, YoutubeLoader, TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.chat_models import init_chat_model
# --- API KEY HANDLING ---
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") or os.getenv("openai")
if not OPENAI_API_KEY:
raise ValueError("❌ OPENAI API Key not found. Please add it in Hugging Face secrets as 'OPENAI_API_KEY' or 'openai'.")
# --- PROCESSING FUNCTION ---
def process_inputs(pdf_file, youtube_url, txt_file, query):
docs = []
# Load PDF
try:
pdf_path = pdf_file.name
pdf_loader = PyPDFLoader(pdf_path)
docs.extend(pdf_loader.load())
except Exception as e:
return f"❌ Failed to load PDF: {e}"
# Load YouTube Transcript (optional)
yt_loaded = False
if youtube_url:
try:
yt_loader = YoutubeLoader.from_youtube_url(youtube_url, add_video_info=False)
docs.extend(yt_loader.load())
yt_loaded = True
except Exception as e:
print(f"⚠️ YouTube transcript not loaded: {e}")
# Load text transcript file (optional fallback)
if not yt_loaded and txt_file is not None:
try:
txt_path = txt_file.name
txt_loader = TextLoader(txt_path)
docs.extend(txt_loader.load())
except Exception as e:
return f"❌ Failed to load transcript file: {e}"
if not docs:
return "❌ No documents could be loaded. Please check your inputs."
# Split text into chunks
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
splits = splitter.split_documents(docs)
# Embed documents
embedding = OpenAIEmbeddings(model="text-embedding-3-large", api_key=OPENAI_API_KEY)
db = FAISS.from_documents(splits, embedding)
# Query using RetrievalQA
llm = init_chat_model("gpt-4o-mini", model_provider="openai", api_key=OPENAI_API_KEY)
qa = RetrievalQA.from_chain_type(llm, retriever=db.as_retriever())
try:
result = qa.invoke({"query": query})
return result["result"]
except Exception as e:
return f"❌ Retrieval failed: {e}"
# --- GRADIO UI ---
with gr.Blocks() as demo:
gr.Markdown("## πŸ“š Ask Questions from PDF + YouTube Transcript or .txt Upload")
with gr.Row():
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
yt_input = gr.Textbox(label="YouTube URL (Optional)", placeholder="https://www.youtube.com/watch?v=...")
txt_input = gr.File(label="Upload Transcript .txt (Optional fallback)", file_types=[".txt"])
query_input = gr.Textbox(label="Your Question", placeholder="e.g., What did the document say about X?")
output = gr.Textbox(label="Answer")
run_button = gr.Button("Get Answer")
run_button.click(fn=process_inputs, inputs=[pdf_input, yt_input, txt_input, query_input], outputs=output)
if __name__ == "__main__":
demo.launch()