File size: 15,051 Bytes
18ce78c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#!/usr/bin/env python
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
#!/usr/bin/env python
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
from __future__ import annotations

import argparse
import os
import random
import time
import uuid
from datetime import datetime

import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import SanaPipeline
from nunchaku.models.transformer_sana import NunchakuSanaTransformer2DModel
from torchvision.utils import save_image

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
DEMO_PORT = int(os.getenv("DEMO_PORT", "15432"))
os.environ["GRADIO_EXAMPLES_CACHE"] = "./.gradio/cache"
COUNTER_DB = os.getenv("COUNTER_DB", ".count.db")
INFER_SPEED = 0

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

style_list = [
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, "
        "cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, "
        "majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, "
        "glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, "
        "disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, "
        "detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, "
        "ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
SCHEDULE_NAME = ["Flow_DPM_Solver"]
DEFAULT_SCHEDULE_NAME = "Flow_DPM_Solver"
NUM_IMAGES_PER_PROMPT = 1


def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_path",
        nargs="?",
        default="Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
        type=str,
        help="Path to the model file (positional)",
    )
    parser.add_argument("--share", action="store_true")

    return parser.parse_known_args()[0]


args = get_args()

if torch.cuda.is_available():

    transformer = NunchakuSanaTransformer2DModel.from_pretrained("mit-han-lab/svdq-int4-sana-1600m")
    pipe = SanaPipeline.from_pretrained(
        "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
        transformer=transformer,
        variant="bf16",
        torch_dtype=torch.bfloat16,
    ).to(device)

    pipe.text_encoder.to(torch.bfloat16)
    pipe.vae.to(torch.bfloat16)


def save_image_sana(img, seed="", save_img=False):
    unique_name = f"{str(uuid.uuid4())}_{seed}.png"
    save_path = os.path.join(f"output/online_demo_img/{datetime.now().date()}")
    os.umask(0o000)  # file permission: 666; dir permission: 777
    os.makedirs(save_path, exist_ok=True)
    unique_name = os.path.join(save_path, unique_name)
    if save_img:
        save_image(img, unique_name, nrow=1, normalize=True, value_range=(-1, 1))

    return unique_name


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@torch.no_grad()
@torch.inference_mode()
@spaces.GPU(enable_queue=True)
def generate(
    prompt: str = None,
    negative_prompt: str = "",
    style: str = DEFAULT_STYLE_NAME,
    use_negative_prompt: bool = False,
    num_imgs: int = 1,
    seed: int = 0,
    height: int = 1024,
    width: int = 1024,
    flow_dpms_guidance_scale: float = 5.0,
    flow_dpms_inference_steps: int = 20,
    randomize_seed: bool = False,
):
    global INFER_SPEED
    # seed = 823753551
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)
    print(f"PORT: {DEMO_PORT}, model_path: {args.model_path}")

    print(prompt)

    num_inference_steps = flow_dpms_inference_steps
    guidance_scale = flow_dpms_guidance_scale

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    prompt, negative_prompt = apply_style(style, prompt, negative_prompt)

    time_start = time.time()
    images = pipe(
        prompt=prompt,
        height=height,
        width=width,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_imgs,
        generator=generator,
    ).images
    INFER_SPEED = (time.time() - time_start) / num_imgs

    save_img = False
    if save_img:
        img = [save_image_sana(img, seed, save_img=save_image) for img in images]
        print(img)
    else:
        img = images

    torch.cuda.empty_cache()

    return (
        img,
        seed,
        f"<span style='font-size: 16px; font-weight: bold;'>Inference Speed: {INFER_SPEED:.3f} s/Img</span>",
    )


model_size = "1.6" if "1600M" in args.model_path else "0.6"
title = f"""
    <div style='display: flex; align-items: center; justify-content: center; text-align: center;'>
        <img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="30%" alt="logo"/>
    </div>
"""
DESCRIPTION = f"""
        <p style="font-size: 30px; font-weight: bold; text-align: center;">Sana: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer (4bit version)</p>
        """
if model_size == "0.6":
    DESCRIPTION += "\n<p>0.6B model's text rendering ability is limited.</p>"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU ๐Ÿฅถ This demo does not work on CPU.</p>"

examples = [
    'a cyberpunk cat with a neon sign that says "Sana"',
    "A very detailed and realistic full body photo set of a tall, slim, and athletic Shiba Inu in a white oversized straight t-shirt, white shorts, and short white shoes.",
    "Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, art nouveau style, illustration art artwork by SenseiJaye, intricate detail.",
    "portrait photo of a girl, photograph, highly detailed face, depth of field",
    'make me a logo that says "So Fast"  with a really cool flying dragon shape with lightning sparks all over the sides and all of it contains Indonesian language',
    "๐Ÿถ Wearing ๐Ÿ•ถ flying on the ๐ŸŒˆ",
    "๐Ÿ‘ง with ๐ŸŒน in the โ„๏ธ",
    "an old rusted robot wearing pants and a jacket riding skis in a supermarket.",
    "professional portrait photo of an anthropomorphic cat wearing fancy gentleman hat and jacket walking in autumn forest.",
    "Astronaut in a jungle, cold color palette, muted colors, detailed",
    "a stunning and luxurious bedroom carved into a rocky mountainside seamlessly blending nature with modern design with a plush earth-toned bed textured stone walls circular fireplace massive uniquely shaped window framing snow-capped mountains dense forests",
]

css = """
.gradio-container {max-width: 850px !important; height: auto !important;}
h1 {text-align: center;}
"""
theme = gr.themes.Base()
with gr.Blocks(css=css, theme=theme, title="Sana") as demo:
    gr.Markdown(title)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    # with gr.Row(equal_height=False):
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(
            label="Result",
            show_label=False,
            height=750,
            columns=NUM_IMAGES_PER_PROMPT,
            format="jpeg",
        )

    speed_box = gr.Markdown(
        value=f"<span style='font-size: 16px; font-weight: bold;'>Inference speed: {INFER_SPEED} s/Img</span>"
    )
    with gr.Accordion("Advanced options", open=False):
        with gr.Group():
            with gr.Row(visible=True):
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            with gr.Row():
                flow_dpms_inference_steps = gr.Slider(
                    label="Sampling steps",
                    minimum=5,
                    maximum=40,
                    step=1,
                    value=20,
                )
                flow_dpms_guidance_scale = gr.Slider(
                    label="CFG Guidance scale",
                    minimum=1,
                    maximum=10,
                    step=0.1,
                    value=4.5,
                )
            with gr.Row():
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
            style_selection = gr.Radio(
                show_label=True,
                container=True,
                interactive=True,
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Image Style",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row(visible=True):
                schedule = gr.Radio(
                    show_label=True,
                    container=True,
                    interactive=True,
                    choices=SCHEDULE_NAME,
                    value=DEFAULT_SCHEDULE_NAME,
                    label="Sampler Schedule",
                    visible=True,
                )
                num_imgs = gr.Slider(
                    label="Num Images",
                    minimum=1,
                    maximum=6,
                    step=1,
                    value=1,
                )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            style_selection,
            use_negative_prompt,
            num_imgs,
            seed,
            height,
            width,
            flow_dpms_guidance_scale,
            flow_dpms_inference_steps,
            randomize_seed,
        ],
        outputs=[result, seed, speed_box],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=DEMO_PORT, debug=False, share=args.share)