Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from dotenv import load_dotenv
|
| 3 |
import os
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
from proctor import (
|
| 7 |
CompositeTechnique,
|
| 8 |
RolePrompting,
|
|
@@ -10,60 +8,51 @@ from proctor import (
|
|
| 10 |
ChainOfVerification,
|
| 11 |
SelfAsk,
|
| 12 |
EmotionPrompting,
|
| 13 |
-
ZeroShotCoT,
|
| 14 |
list_techniques,
|
| 15 |
)
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
logging.basicConfig(level=logging.INFO)
|
| 19 |
-
logger = logging.getLogger(__name__)
|
| 20 |
-
|
| 21 |
-
# Load environment variables
|
| 22 |
load_dotenv()
|
| 23 |
-
|
| 24 |
-
# Check for OpenRouter API key
|
| 25 |
openrouter_key = os.environ.get("OPENROUTER_API_KEY")
|
| 26 |
-
if not openrouter_key:
|
| 27 |
-
raise ValueError("OPENROUTER_API_KEY not set. Please set it in your .env file.")
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
"Llama 4 Scout": "openrouter/meta-llama/llama-4-scout",
|
| 35 |
-
"Mistral Small 3.1 24B": "openrouter/mistralai/mistral-small-3.1-24b-instruct",
|
| 36 |
-
}
|
| 37 |
-
|
| 38 |
-
TECHNIQUES = list_techniques()
|
| 39 |
|
| 40 |
-
# Model
|
| 41 |
MODEL_CONFIGS = {
|
| 42 |
-
"
|
|
|
|
| 43 |
"api_base": "https://openrouter.ai/api/v1",
|
| 44 |
"api_key": openrouter_key,
|
| 45 |
"temperature": 0.3,
|
| 46 |
-
"max_tokens":
|
| 47 |
},
|
| 48 |
-
"
|
|
|
|
| 49 |
"api_base": "https://openrouter.ai/api/v1",
|
| 50 |
"api_key": openrouter_key,
|
| 51 |
"temperature": 0.7,
|
| 52 |
-
"max_tokens":
|
| 53 |
},
|
| 54 |
-
"
|
|
|
|
| 55 |
"api_base": "https://openrouter.ai/api/v1",
|
| 56 |
"api_key": openrouter_key,
|
| 57 |
"temperature": 0.6,
|
| 58 |
-
"max_tokens":
|
| 59 |
},
|
| 60 |
-
"
|
|
|
|
| 61 |
"api_base": "https://openrouter.ai/api/v1",
|
| 62 |
"api_key": openrouter_key,
|
| 63 |
"temperature": 0.6,
|
| 64 |
-
"max_tokens":
|
| 65 |
},
|
| 66 |
-
"
|
|
|
|
| 67 |
"api_base": "https://openrouter.ai/api/v1",
|
| 68 |
"api_key": openrouter_key,
|
| 69 |
"temperature": 0.8,
|
|
@@ -71,251 +60,183 @@ MODEL_CONFIGS = {
|
|
| 71 |
},
|
| 72 |
}
|
| 73 |
|
| 74 |
-
#
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
name="Expert Chain-of-Thought",
|
| 78 |
identifier="custom-expert-cot",
|
| 79 |
-
techniques=[
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
def
|
| 94 |
"""
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
Args:
|
| 98 |
-
response: The raw response text to format
|
| 99 |
-
|
| 100 |
-
Returns:
|
| 101 |
-
Formatted markdown string
|
| 102 |
"""
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
for line in lines:
|
| 111 |
-
line = line.strip()
|
| 112 |
-
if not line:
|
| 113 |
-
in_list = False
|
| 114 |
-
formatted_lines.append("")
|
| 115 |
-
continue
|
| 116 |
-
|
| 117 |
-
# Check for headings (e.g., "Target Market:")
|
| 118 |
-
if line.endswith(":") and not line.startswith("-") and len(line) < 100:
|
| 119 |
-
formatted_lines.append(f"### {line}")
|
| 120 |
-
continue
|
| 121 |
-
|
| 122 |
-
# Check for list items (e.g., "- Item" or "1. Item")
|
| 123 |
-
if line.startswith("-") or (line and line[0].isdigit() and len(line) > 2 and line[1:3] in [". ", ".("]):
|
| 124 |
-
in_list = True
|
| 125 |
-
formatted_lines.append(line)
|
| 126 |
-
continue
|
| 127 |
-
|
| 128 |
-
# If not a heading or list item, treat as a paragraph
|
| 129 |
-
if in_list:
|
| 130 |
-
in_list = False
|
| 131 |
-
formatted_lines.append("")
|
| 132 |
-
formatted_lines.append(line)
|
| 133 |
-
|
| 134 |
-
return "\n".join(formatted_lines)
|
| 135 |
|
| 136 |
-
def
|
| 137 |
"""
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
Args:
|
| 141 |
-
problem: The problem statement
|
| 142 |
-
technique_name: Selected technique name
|
| 143 |
-
model_name: Selected model name
|
| 144 |
-
|
| 145 |
-
Returns:
|
| 146 |
-
Error message if validation fails, None otherwise
|
| 147 |
"""
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
def
|
| 160 |
-
problem: str,
|
| 161 |
-
technique_name: str,
|
| 162 |
-
model_name: str,
|
| 163 |
-
role: str = "",
|
| 164 |
-
emotion: str = ""
|
| 165 |
-
) -> str:
|
| 166 |
"""
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
Args:
|
| 170 |
-
problem: The problem statement to solve
|
| 171 |
-
technique_name: Name of the prompting technique to use
|
| 172 |
-
model_name: Name of the model to use
|
| 173 |
-
role: Role for role prompting (optional)
|
| 174 |
-
emotion: Emotion for emotion prompting (optional)
|
| 175 |
-
|
| 176 |
-
Returns:
|
| 177 |
-
Formatted response or error message
|
| 178 |
"""
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
kwargs = {"llm_config": llm_config}
|
| 191 |
-
|
| 192 |
-
# Add technique-specific parameters
|
| 193 |
-
if technique_name == "RolePrompting":
|
| 194 |
-
kwargs["role"] = role.strip() or "Expert"
|
| 195 |
-
elif technique_name == "EmotionPrompting":
|
| 196 |
-
kwargs["emotion"] = emotion.strip() or "thoughtful and methodical"
|
| 197 |
-
elif technique_name == "Expert Chain-of-Thought":
|
| 198 |
-
kwargs["role"] = role.strip() or "Expert"
|
| 199 |
-
|
| 200 |
-
logger.info(f"Processing problem with {technique_name} using {model_name}")
|
| 201 |
-
response = technique.execute(problem.strip(), **kwargs)
|
| 202 |
-
|
| 203 |
-
# Format and return the response
|
| 204 |
-
markdown_response = format_as_markdown(response)
|
| 205 |
-
logger.info("Successfully processed problem")
|
| 206 |
-
return markdown_response
|
| 207 |
-
|
| 208 |
-
except Exception as e:
|
| 209 |
-
error_msg = f"Error processing request: {str(e)}"
|
| 210 |
-
logger.error(error_msg)
|
| 211 |
-
return f"**Error**: {error_msg}"
|
| 212 |
|
| 213 |
-
def
|
| 214 |
"""
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
Args:
|
| 218 |
-
technique: Selected technique name
|
| 219 |
-
|
| 220 |
-
Returns:
|
| 221 |
-
Dictionary with visibility updates for inputs
|
| 222 |
"""
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
| 226 |
return {
|
| 227 |
-
|
| 228 |
-
|
|
|
|
| 229 |
}
|
| 230 |
|
| 231 |
-
#
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
}
|
| 240 |
"""
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
)
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
)
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
inputs=
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
|
|
|
| 318 |
|
| 319 |
-
# Launch the app
|
| 320 |
if __name__ == "__main__":
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
import gradio as gr
|
| 4 |
from proctor import (
|
| 5 |
CompositeTechnique,
|
| 6 |
RolePrompting,
|
|
|
|
| 8 |
ChainOfVerification,
|
| 9 |
SelfAsk,
|
| 10 |
EmotionPrompting,
|
|
|
|
| 11 |
list_techniques,
|
| 12 |
)
|
| 13 |
|
| 14 |
+
# Load environment variables (.env should contain OPENROUTER_API_KEY)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
load_dotenv()
|
|
|
|
|
|
|
| 16 |
openrouter_key = os.environ.get("OPENROUTER_API_KEY")
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Check API key
|
| 19 |
+
if not openrouter_key:
|
| 20 |
+
raise RuntimeError(
|
| 21 |
+
"❌ OPENROUTER_API_KEY not set. Please set it in your .env file."
|
| 22 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
# ----- Model Configs -----
|
| 25 |
MODEL_CONFIGS = {
|
| 26 |
+
"gemini": {
|
| 27 |
+
"model": "openrouter/google/gemini-2.5-flash-preview-05-20",
|
| 28 |
"api_base": "https://openrouter.ai/api/v1",
|
| 29 |
"api_key": openrouter_key,
|
| 30 |
"temperature": 0.3,
|
| 31 |
+
"max_tokens": 1500,
|
| 32 |
},
|
| 33 |
+
"claude": {
|
| 34 |
+
"model": "openrouter/anthropic/claude-sonnet-4",
|
| 35 |
"api_base": "https://openrouter.ai/api/v1",
|
| 36 |
"api_key": openrouter_key,
|
| 37 |
"temperature": 0.7,
|
| 38 |
+
"max_tokens": 2000,
|
| 39 |
},
|
| 40 |
+
"deepseek": {
|
| 41 |
+
"model": "openrouter/deepseek/deepseek-r1-0528",
|
| 42 |
"api_base": "https://openrouter.ai/api/v1",
|
| 43 |
"api_key": openrouter_key,
|
| 44 |
"temperature": 0.6,
|
| 45 |
+
"max_tokens": 3000,
|
| 46 |
},
|
| 47 |
+
"llama": {
|
| 48 |
+
"model": "openrouter/meta-llama/llama-4-scout",
|
| 49 |
"api_base": "https://openrouter.ai/api/v1",
|
| 50 |
"api_key": openrouter_key,
|
| 51 |
"temperature": 0.6,
|
| 52 |
+
"max_tokens": 2500,
|
| 53 |
},
|
| 54 |
+
"mistral": {
|
| 55 |
+
"model": "openrouter/mistralai/mistral-small-3.1-24b-instruct",
|
| 56 |
"api_base": "https://openrouter.ai/api/v1",
|
| 57 |
"api_key": openrouter_key,
|
| 58 |
"temperature": 0.8,
|
|
|
|
| 60 |
},
|
| 61 |
}
|
| 62 |
|
| 63 |
+
# ----- Tool Functions -----
|
| 64 |
+
|
| 65 |
+
def proctor_expert_cot(problem: str) -> dict:
|
| 66 |
+
"""
|
| 67 |
+
Chain-of-Thought, Verification, and Role Prompting on Gemini.
|
| 68 |
+
"""
|
| 69 |
+
technique = CompositeTechnique(
|
| 70 |
name="Expert Chain-of-Thought",
|
| 71 |
identifier="custom-expert-cot",
|
| 72 |
+
techniques=[
|
| 73 |
+
RolePrompting(),
|
| 74 |
+
ChainOfThought(),
|
| 75 |
+
ChainOfVerification(),
|
| 76 |
+
],
|
| 77 |
+
)
|
| 78 |
+
response = technique.execute(
|
| 79 |
+
problem,
|
| 80 |
+
llm_config=MODEL_CONFIGS["gemini"],
|
| 81 |
+
role="Expert House Builder and Construction Manager"
|
| 82 |
+
)
|
| 83 |
+
return {
|
| 84 |
+
"model": "Google Gemini 2.5 Flash",
|
| 85 |
+
"technique": "Expert Chain-of-Thought",
|
| 86 |
+
"response": response
|
| 87 |
+
}
|
| 88 |
|
| 89 |
+
def proctor_claude_cot(problem: str) -> dict:
|
| 90 |
"""
|
| 91 |
+
Chain-of-Thought with Claude 4 Sonnet.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
"""
|
| 93 |
+
technique = ChainOfThought()
|
| 94 |
+
response = technique.execute(problem, llm_config=MODEL_CONFIGS["claude"])
|
| 95 |
+
return {
|
| 96 |
+
"model": "Claude 4 Sonnet",
|
| 97 |
+
"technique": "Chain-of-Thought",
|
| 98 |
+
"response": response
|
| 99 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
+
def proctor_deepseek_reasoning(problem: str) -> dict:
|
| 102 |
"""
|
| 103 |
+
Deep reasoning with DeepSeek R1: CoT, SelfAsk, Verification.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
"""
|
| 105 |
+
technique = CompositeTechnique(
|
| 106 |
+
name="Deep Reasoning Analysis",
|
| 107 |
+
identifier="deep-reasoning",
|
| 108 |
+
techniques=[
|
| 109 |
+
ChainOfThought(),
|
| 110 |
+
SelfAsk(),
|
| 111 |
+
ChainOfVerification(),
|
| 112 |
+
],
|
| 113 |
+
)
|
| 114 |
+
response = technique.execute(problem, llm_config=MODEL_CONFIGS["deepseek"])
|
| 115 |
+
return {
|
| 116 |
+
"model": "DeepSeek R1",
|
| 117 |
+
"technique": "Deep Reasoning Analysis",
|
| 118 |
+
"response": response
|
| 119 |
+
}
|
| 120 |
|
| 121 |
+
def proctor_llama_emotion(problem: str) -> dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
"""
|
| 123 |
+
Emotion Prompting with Llama 4 Scout.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
"""
|
| 125 |
+
technique = EmotionPrompting()
|
| 126 |
+
response = technique.execute(
|
| 127 |
+
problem,
|
| 128 |
+
llm_config=MODEL_CONFIGS["llama"],
|
| 129 |
+
emotion="thoughtful and methodical"
|
| 130 |
+
)
|
| 131 |
+
return {
|
| 132 |
+
"model": "Llama 4 Scout",
|
| 133 |
+
"technique": "Emotion Prompting",
|
| 134 |
+
"response": response
|
| 135 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
def proctor_mistral_tips(problem: str) -> dict:
|
| 138 |
"""
|
| 139 |
+
Fast Role Prompting with Mistral Small (for quick suggestions).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
"""
|
| 141 |
+
technique = RolePrompting()
|
| 142 |
+
response = technique.execute(
|
| 143 |
+
problem,
|
| 144 |
+
llm_config=MODEL_CONFIGS["mistral"],
|
| 145 |
+
role="Construction Project Manager"
|
| 146 |
+
)
|
| 147 |
return {
|
| 148 |
+
"model": "Mistral Small 3.1 24B",
|
| 149 |
+
"technique": "Role Prompting",
|
| 150 |
+
"response": response
|
| 151 |
}
|
| 152 |
|
| 153 |
+
# Optionally, expose a unified tool for arbitrary model/technique selection:
|
| 154 |
+
def proctor_flexible(
|
| 155 |
+
problem: str,
|
| 156 |
+
model: str = "gemini",
|
| 157 |
+
technique: str = "ChainOfThought",
|
| 158 |
+
role: str = "",
|
| 159 |
+
emotion: str = ""
|
| 160 |
+
) -> dict:
|
|
|
|
| 161 |
"""
|
| 162 |
+
Flexible interface for any model/technique combo.
|
| 163 |
+
"""
|
| 164 |
+
technique_map = {
|
| 165 |
+
"ChainOfThought": ChainOfThought,
|
| 166 |
+
"RolePrompting": RolePrompting,
|
| 167 |
+
"EmotionPrompting": EmotionPrompting,
|
| 168 |
+
"SelfAsk": SelfAsk,
|
| 169 |
+
"ChainOfVerification": ChainOfVerification,
|
| 170 |
+
}
|
| 171 |
+
if technique == "CompositeExpert":
|
| 172 |
+
tech = CompositeTechnique(
|
| 173 |
+
name="Expert Chain-of-Thought",
|
| 174 |
+
identifier="custom-expert-cot",
|
| 175 |
+
techniques=[
|
| 176 |
+
RolePrompting(),
|
| 177 |
+
ChainOfThought(),
|
| 178 |
+
ChainOfVerification(),
|
| 179 |
+
],
|
| 180 |
+
)
|
| 181 |
+
response = tech.execute(problem, llm_config=MODEL_CONFIGS[model], role=role)
|
| 182 |
+
elif technique == "DeepReasoning":
|
| 183 |
+
tech = CompositeTechnique(
|
| 184 |
+
name="Deep Reasoning Analysis",
|
| 185 |
+
identifier="deep-reasoning",
|
| 186 |
+
techniques=[
|
| 187 |
+
ChainOfThought(),
|
| 188 |
+
SelfAsk(),
|
| 189 |
+
ChainOfVerification(),
|
| 190 |
+
],
|
| 191 |
+
)
|
| 192 |
+
response = tech.execute(problem, llm_config=MODEL_CONFIGS[model])
|
| 193 |
+
else:
|
| 194 |
+
tech_cls = technique_map.get(technique, ChainOfThought)
|
| 195 |
+
if technique == "RolePrompting":
|
| 196 |
+
response = tech_cls().execute(problem, llm_config=MODEL_CONFIGS[model], role=role)
|
| 197 |
+
elif technique == "EmotionPrompting":
|
| 198 |
+
response = tech_cls().execute(problem, llm_config=MODEL_CONFIGS[model], emotion=emotion)
|
| 199 |
+
else:
|
| 200 |
+
response = tech_cls().execute(problem, llm_config=MODEL_CONFIGS[model])
|
| 201 |
+
return {
|
| 202 |
+
"model": MODEL_CONFIGS[model]["model"],
|
| 203 |
+
"technique": technique,
|
| 204 |
+
"response": response
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
# ----- Gradio/MCP Interface -----
|
| 208 |
+
|
| 209 |
+
with gr.Blocks() as demo:
|
| 210 |
+
gr.Markdown("# 🏗️ Proctor AI MCP Server\nAdvanced prompt engineering tools via OpenRouter and Proctor AI.\n\n*Try from an MCP-compatible client or the web UI below!*")
|
| 211 |
+
with gr.Tab("Gemini (Expert CoT)"):
|
| 212 |
+
gr.Interface(fn=proctor_expert_cot, inputs=gr.Textbox(label="Problem"), outputs=gr.JSON(), allow_flagging="never")
|
| 213 |
+
with gr.Tab("Claude 4 (Chain-of-Thought)"):
|
| 214 |
+
gr.Interface(fn=proctor_claude_cot, inputs=gr.Textbox(label="Problem"), outputs=gr.JSON(), allow_flagging="never")
|
| 215 |
+
with gr.Tab("DeepSeek R1 (Deep Reasoning)"):
|
| 216 |
+
gr.Interface(fn=proctor_deepseek_reasoning, inputs=gr.Textbox(label="Problem"), outputs=gr.JSON(), allow_flagging="never")
|
| 217 |
+
with gr.Tab("Llama 4 (Emotion Prompting)"):
|
| 218 |
+
gr.Interface(fn=proctor_llama_emotion, inputs=gr.Textbox(label="Problem"), outputs=gr.JSON(), allow_flagging="never")
|
| 219 |
+
with gr.Tab("Mistral (Quick Tips)"):
|
| 220 |
+
gr.Interface(fn=proctor_mistral_tips, inputs=gr.Textbox(label="Problem (tips request)"), outputs=gr.JSON(), allow_flagging="never")
|
| 221 |
+
with gr.Tab("Flexible (Advanced)"):
|
| 222 |
+
model_dropdown = gr.Dropdown(choices=list(MODEL_CONFIGS.keys()), value="gemini", label="Model")
|
| 223 |
+
technique_dropdown = gr.Dropdown(
|
| 224 |
+
choices=["ChainOfThought", "RolePrompting", "EmotionPrompting", "SelfAsk", "ChainOfVerification", "CompositeExpert", "DeepReasoning"],
|
| 225 |
+
value="ChainOfThought",
|
| 226 |
+
label="Technique"
|
| 227 |
+
)
|
| 228 |
+
role_input = gr.Textbox(label="Role (optional)", value="")
|
| 229 |
+
emotion_input = gr.Textbox(label="Emotion (optional)", value="")
|
| 230 |
+
flexible_iface = gr.Interface(
|
| 231 |
+
fn=proctor_flexible,
|
| 232 |
+
inputs=[gr.Textbox(label="Problem"),
|
| 233 |
+
model_dropdown,
|
| 234 |
+
technique_dropdown,
|
| 235 |
+
role_input,
|
| 236 |
+
emotion_input],
|
| 237 |
+
outputs=gr.JSON(),
|
| 238 |
+
allow_flagging="never"
|
| 239 |
+
)
|
| 240 |
|
|
|
|
| 241 |
if __name__ == "__main__":
|
| 242 |
+
demo.launch(mcp_server=True)
|