File size: 10,410 Bytes
173384d
 
 
59ab50d
 
173384d
 
 
 
 
 
 
 
 
 
 
59ab50d
 
 
 
173384d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ab50d
173384d
 
59ab50d
173384d
 
 
 
 
59ab50d
173384d
 
 
 
 
59ab50d
173384d
 
 
 
 
59ab50d
173384d
 
 
 
 
59ab50d
173384d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ab50d
a59fbdd
 
59ab50d
 
 
 
 
 
a59fbdd
59ab50d
 
 
a59fbdd
 
 
 
 
 
 
 
 
 
 
 
59ab50d
a59fbdd
 
 
 
59ab50d
a59fbdd
 
 
 
 
 
 
 
 
 
 
 
59ab50d
 
 
 
 
 
 
 
 
 
 
 
 
173384d
 
59ab50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173384d
59ab50d
 
 
173384d
 
59ab50d
173384d
59ab50d
 
173384d
59ab50d
173384d
59ab50d
173384d
59ab50d
 
 
 
173384d
59ab50d
a59fbdd
59ab50d
a59fbdd
59ab50d
173384d
59ab50d
 
 
173384d
59ab50d
 
 
173384d
59ab50d
 
 
 
 
 
 
 
173384d
59ab50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173384d
59ab50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173384d
59ab50d
 
 
 
 
 
173384d
 
 
 
 
 
59ab50d
 
 
 
 
 
 
 
 
 
173384d
 
 
 
59ab50d
173384d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import gradio as gr
from dotenv import load_dotenv
import os
import logging
from typing import Dict, Any, Optional
from proctor import (
    CompositeTechnique,
    RolePrompting,
    ChainOfThought,
    ChainOfVerification,
    SelfAsk,
    EmotionPrompting,
    ZeroShotCoT,
    list_techniques,
)

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()

# Check for OpenRouter API key
openrouter_key = os.environ.get("OPENROUTER_API_KEY")
if not openrouter_key:
    raise ValueError("OPENROUTER_API_KEY not set. Please set it in your .env file.")

# Available models and techniques
MODELS = {
    "Google Gemini 2.5 Flash": "openrouter/google/gemini-2.5-flash-preview-05-20",
    "Claude 4 Sonnet": "openrouter/anthropic/claude-sonnet-4",
    "DeepSeek R1": "openrouter/deepseek/deepseek-r1-0528",
    "Llama 4 Scout": "openrouter/meta-llama/llama-4-scout",
    "Mistral Small 3.1 24B": "openrouter/mistralai/mistral-small-3.1-24b-instruct",
}

TECHNIQUES = list_techniques()

# Model configurations with optimized parameters
MODEL_CONFIGS = {
    "openrouter/google/gemini-2.5-flash-preview-05-20": {
        "api_base": "https://openrouter.ai/api/v1",
        "api_key": openrouter_key,
        "temperature": 0.3,
        "max_tokens": 15000,
    },
    "openrouter/anthropic/claude-sonnet-4": {
        "api_base": "https://openrouter.ai/api/v1",
        "api_key": openrouter_key,
        "temperature": 0.7,
        "max_tokens": 12000,
    },
    "openrouter/deepseek/deepseek-r1-0528": {
        "api_base": "https://openrouter.ai/api/v1",
        "api_key": openrouter_key,
        "temperature": 0.6,
        "max_tokens": 8000,
    },
    "openrouter/meta-llama/llama-4-scout": {
        "api_base": "https://openrouter.ai/api/v1",
        "api_key": openrouter_key,
        "temperature": 0.6,
        "max_tokens": 12500,
    },
    "openrouter/mistralai/mistral-small-3.1-24b-instruct": {
        "api_base": "https://openrouter.ai/api/v1",
        "api_key": openrouter_key,
        "temperature": 0.8,
        "max_tokens": 1000,
    },
}

# Composite technique definitions
TECHNIQUE_CONFIGS = {
    "Expert Chain-of-Thought": CompositeTechnique(
        name="Expert Chain-of-Thought",
        identifier="custom-expert-cot",
        techniques=[RolePrompting(), ChainOfThought(), ChainOfVerification()],
    ),
    "Deep Reasoning Analysis": CompositeTechnique(
        name="Deep Reasoning Analysis",
        identifier="deep-reasoning",
        techniques=[ChainOfThought(), SelfAsk(), ChainOfVerification()],
    ),
    "ChainOfThought": ChainOfThought(),
    "EmotionPrompting": EmotionPrompting(),
    "RolePrompting": RolePrompting(),
    "SelfAsk": SelfAsk(),
    "ZeroShotCoT": ZeroShotCoT(),
}

def format_as_markdown(response: str) -> str:
    """
    Format the response as Markdown for better readability.
    
    Args:
        response: The raw response text to format
        
    Returns:
        Formatted markdown string
    """
    if not response:
        return ""
        
    lines = response.split("\n")
    formatted_lines = []
    in_list = False

    for line in lines:
        line = line.strip()
        if not line:
            in_list = False
            formatted_lines.append("")
            continue

        # Check for headings (e.g., "Target Market:")
        if line.endswith(":") and not line.startswith("-") and len(line) < 100:
            formatted_lines.append(f"### {line}")
            continue

        # Check for list items (e.g., "- Item" or "1. Item")
        if line.startswith("-") or (line and line[0].isdigit() and len(line) > 2 and line[1:3] in [". ", ".("]):
            in_list = True
            formatted_lines.append(line)
            continue

        # If not a heading or list item, treat as a paragraph
        if in_list:
            in_list = False
            formatted_lines.append("")
        formatted_lines.append(line)

    return "\n".join(formatted_lines)

def validate_inputs(problem: str, technique_name: str, model_name: str) -> Optional[str]:
    """
    Validate user inputs and return error message if invalid.
    
    Args:
        problem: The problem statement
        technique_name: Selected technique name
        model_name: Selected model name
        
    Returns:
        Error message if validation fails, None otherwise
    """
    if not problem or not problem.strip():
        return "Please enter a problem statement."
    
    if technique_name not in TECHNIQUE_CONFIGS:
        return f"Technique '{technique_name}' not found."
    
    if model_name not in MODELS:
        return f"Model '{model_name}' not found."
    
    return None

def process_problem(
    problem: str, 
    technique_name: str, 
    model_name: str, 
    role: str = "", 
    emotion: str = ""
) -> str:
    """
    Process the problem using the selected technique and model.
    
    Args:
        problem: The problem statement to solve
        technique_name: Name of the prompting technique to use
        model_name: Name of the model to use
        role: Role for role prompting (optional)
        emotion: Emotion for emotion prompting (optional)
        
    Returns:
        Formatted response or error message
    """
    # Validate inputs
    validation_error = validate_inputs(problem, technique_name, model_name)
    if validation_error:
        return f"**Error**: {validation_error}"
    
    technique = TECHNIQUE_CONFIGS[technique_name]
    model_id = MODELS[model_name]
    llm_config = MODEL_CONFIGS[model_id]
    
    try:
        # Prepare kwargs for technique execution
        kwargs = {"llm_config": llm_config}
        
        # Add technique-specific parameters
        if technique_name == "RolePrompting":
            kwargs["role"] = role.strip() or "Expert"
        elif technique_name == "EmotionPrompting":
            kwargs["emotion"] = emotion.strip() or "thoughtful and methodical"
        elif technique_name == "Expert Chain-of-Thought":
            kwargs["role"] = role.strip() or "Expert"
        
        logger.info(f"Processing problem with {technique_name} using {model_name}")
        response = technique.execute(problem.strip(), **kwargs)
        
        # Format and return the response
        markdown_response = format_as_markdown(response)
        logger.info("Successfully processed problem")
        return markdown_response
        
    except Exception as e:
        error_msg = f"Error processing request: {str(e)}"
        logger.error(error_msg)
        return f"**Error**: {error_msg}"

def update_input_visibility(technique: str) -> Dict[str, Any]:
    """
    Update visibility of role and emotion inputs based on selected technique.
    
    Args:
        technique: Selected technique name
        
    Returns:
        Dictionary with visibility updates for inputs
    """
    show_role = technique in ["RolePrompting", "Expert Chain-of-Thought"]
    show_emotion = technique == "EmotionPrompting"
    
    return {
        role_input: gr.update(visible=show_role),
        emotion_input: gr.update(visible=show_emotion)
    }

# Create Gradio interface with improved styling
with gr.Blocks(
    title="Proctor AI Prompt Engineering App",
    theme=gr.themes.Soft(),
    css="""
    .gradio-container {
        max-width: 1200px !important;
        margin: auto !important;
    }
    """
) as interface:
    gr.Markdown(
        """
        # 🤖 Proctor AI Prompt Engineering App
        
        **Enhance your problem-solving with advanced AI prompting techniques**
        
        Enter a problem, select a technique and model, and get intelligent responses powered by OpenRouter.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=2):
            problem_input = gr.Textbox(
                label="Problem Statement",
                placeholder="e.g., How to build a sustainable house for a family of 4?",
                lines=3,
                max_lines=5
            )
            
            with gr.Row():
                technique_dropdown = gr.Dropdown(
                    choices=list(TECHNIQUE_CONFIGS.keys()),
                    label="Prompting Technique",
                    value=list(TECHNIQUE_CONFIGS.keys())[0] if TECHNIQUE_CONFIGS else None
                )
                model_dropdown = gr.Dropdown(
                    choices=list(MODELS.keys()),
                    label="Model",
                    value=list(MODELS.keys())[0] if MODELS else None
                )
            
            role_input = gr.Textbox(
                label="Role (for RolePrompting or Expert CoT)",
                placeholder="e.g., Expert Architect",
                visible=False
            )
            emotion_input = gr.Textbox(
                label="Emotion (for EmotionPrompting)",
                placeholder="e.g., thoughtful and methodical",
                visible=False
            )
            
            submit_button = gr.Button(
                "🚀 Generate Response",
                variant="primary",
                size="lg"
            )
        
        with gr.Column(scale=3):
            output = gr.Markdown(
                label="Response",
                value="*Your response will appear here...*"
            )
    
    # Event handlers
    technique_dropdown.change(
        fn=update_input_visibility,
        inputs=technique_dropdown,
        outputs=[role_input, emotion_input]
    )
    
    submit_button.click(
        fn=process_problem,
        inputs=[problem_input, technique_dropdown, model_dropdown, role_input, emotion_input],
        outputs=output
    )
    
    # Add examples
    gr.Examples(
        examples=[
            ["How can I improve team productivity in a remote work environment?", "Expert Chain-of-Thought", "Claude 4 Sonnet", "Management Consultant", ""],
            ["What are the key factors to consider when starting a tech startup?", "Deep Reasoning Analysis", "Google Gemini 2.5 Flash", "", ""],
            ["How do I create a sustainable garden in a small urban space?", "RolePrompting", "DeepSeek R1", "Urban Gardening Expert", ""],
        ],
        inputs=[problem_input, technique_dropdown, model_dropdown, role_input, emotion_input],
    )

# Launch the app
if __name__ == "__main__":
    interface.launch(
        share=True,
    )