File size: 8,544 Bytes
f1996dd
 
 
 
d0b423f
 
 
 
 
 
f1996dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b423f
 
f1996dd
fd84b98
 
f1996dd
fd84b98
f1996dd
 
 
 
 
d0b423f
f1996dd
 
d0b423f
f1996dd
 
d0b423f
 
f1996dd
fd84b98
 
f1996dd
fd84b98
f1996dd
 
 
 
 
 
d0b423f
f1996dd
fd84b98
 
f1996dd
fd84b98
f1996dd
 
 
 
 
 
fd84b98
f1996dd
 
d0b423f
f1996dd
fd84b98
 
f1996dd
fd84b98
f1996dd
 
 
 
 
d0b423f
 
 
 
f1996dd
 
 
 
 
fd84b98
f1996dd
fd84b98
f1996dd
d0b423f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd84b98
d0b423f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd84b98
 
d0b423f
fd84b98
d0b423f
f1996dd
d0b423f
 
fd84b98
f1996dd
 
 
fd84b98
f1996dd
 
 
 
 
fd84b98
f1996dd
 
 
 
 
fd84b98
f1996dd
 
 
 
 
fd84b98
f1996dd
 
 
 
 
 
fd84b98
f1996dd
 
 
d0b423f
 
fd84b98
d0b423f
 
 
f1996dd
d0b423f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import base64
import gradio as gr
from mistralai import Mistral
from mistralai.models import OCRResponse
from pathlib import Path
from enum import Enum
from pydantic import BaseModel
import pycountry
import json

# Initialize Mistral client with API key
api_key = os.environ.get("MISTRAL_API_KEY")
if not api_key:
    raise ValueError("Please set the MISTRAL_API_KEY environment variable.")
client = Mistral(api_key=api_key)

# Helper function to encode image to base64
def encode_image(image_path):
    try:
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')
    except Exception as e:
        return f"Error encoding image: {str(e)}"

# OCR with PDF URL
def ocr_pdf_url(pdf_url):
    try:
        ocr_response = client.ocr.process(
            model="mistral-ocr-latest",
            document={"type": "document_url", "document_url": pdf_url},
            include_image_base64=True
        )
        markdown = ocr_response.pages[0].markdown if ocr_response.pages else str(ocr_response)
        return markdown  # Return raw markdown for gr.Markdown to render
    except Exception as e:
        return f"**Error:** {str(e)}"

# OCR with Uploaded PDF
def ocr_uploaded_pdf(pdf_file):
    try:
        uploaded_pdf = client.files.upload(
            file={"file_name": pdf_file.name, "content": open(pdf_file.name, "rb")},
            purpose="ocr"
        )
        signed_url = client.files.get_signed_url(file_id=uploaded_pdf.id, expiry=3600)
        ocr_response = client.ocr.process(
            model="mistral-ocr-latest",
            document={"type": "document_url", "document_url": signed_url.url},
            include_image_base64=True
        )
        markdown = ocr_response.pages[0].markdown if ocr_response.pages else str(ocr_response)
        return markdown
    except Exception as e:
        return f"**Error:** {str(e)}"

# OCR with Image URL
def ocr_image_url(image_url):
    try:
        ocr_response = client.ocr.process(
            model="mistral-ocr-latest",
            document={"type": "image_url", "image_url": image_url}
        )
        markdown = ocr_response.pages[0].markdown if ocr_response.pages else str(ocr_response)
        return markdown
    except Exception as e:
        return f"**Error:** {str(e)}"

# OCR with Uploaded Image
def ocr_uploaded_image(image_file):
    try:
        base64_image = encode_image(image_file.name)
        if "Error" in base64_image:
            return f"**Error:** {base64_image}"
        ocr_response = client.ocr.process(
            model="mistral-ocr-latest",
            document={"type": "image_url", "image_url": f"data:image/jpeg;base64,{base64_image}"}
        )
        markdown = ocr_response.pages[0].markdown if ocr_response.pages else str(ocr_response)
        return markdown
    except Exception as e:
        return f"**Error:** {str(e)}"

# Document Understanding
def document_understanding(doc_url, question):
    try:
        messages = [
            {"role": "user", "content": [
                {"type": "text", "text": question},
                {"type": "document_url", "document_url": doc_url}
            ]}
        ]
        chat_response = client.chat.complete(
            model="mistral-small-latest",
            messages=messages
        )
        return chat_response.choices[0].message.content  # Plain text output
    except Exception as e:
        return f"**Error:** {str(e)}"

# Structured OCR Setup
languages = {lang.alpha_2: lang.name for lang in pycountry.languages if hasattr(lang, 'alpha_2')}

class LanguageMeta(Enum.__class__):
    def __new__(metacls, cls, bases, classdict):
        for code, name in languages.items():
            classdict[name.upper().replace(' ', '_')] = name
        return super().__new__(metacls, cls, bases, classdict)

class Language(Enum, metaclass=LanguageMeta):
    pass

class StructuredOCR(BaseModel):
    file_name: str
    topics: list[str]
    languages: list[Language]
    ocr_contents: dict

def structured_ocr(image_file):
    try:
        image_path = Path(image_file.name)
        encoded_image = encode_image(image_path)
        if "Error" in encoded_image:
            return f"**Error:** {encoded_image}"
        base64_data_url = f"data:image/jpeg;base64,{encoded_image}"

        # OCR processing
        image_response = client.ocr.process(
            document={"type": "image_url", "image_url": base64_data_url},
            model="mistral-ocr-latest"
        )
        image_ocr_markdown = image_response.pages[0].markdown

        # Structured output with pixtral-12b-latest
        chat_response = client.chat.complete(
            model="pixtral-12b-latest",
            messages=[{
                "role": "user",
                "content": [
                    {"type": "image_url", "image_url": base64_data_url},
                    {"type": "text", "text": (
                        f"This is the image's OCR in markdown:\n<BEGIN_IMAGE_OCR>\n{image_ocr_markdown}\n<END_IMAGE_OCR>.\n"
                        "Convert this into a structured JSON response with the OCR contents in a sensible dictionary."
                    )}
                ],
            }],
            response_format={"type": "json_object"},
            temperature=0
        )
        
        response_dict = json.loads(chat_response.choices[0].message.content)
        structured_response = StructuredOCR.parse_obj({
            "file_name": image_path.name,
            "topics": response_dict.get("topics", []),
            "languages": [Language[l] for l in response_dict.get("languages", ["English"]) if l in languages.values()],
            "ocr_contents": response_dict.get("ocr_contents", {})
        })
        # Return as Markdown code block
        return f"```json\n{json.dumps(structured_response.dict(), indent=4)}\n```"
    except Exception as e:
        return f"**Error:** {str(e)}"

# Gradio Interface
with gr.Blocks(title="Mistral OCR & Structured Output App") as demo:
    gr.Markdown("# Mistral OCR & Structured Output App")
    gr.Markdown("Extract text from PDFs and images, ask questions about documents, or get structured JSON output in Markdown format!")

    with gr.Tab("OCR with PDF URL"):
        pdf_url_input = gr.Textbox(label="PDF URL", placeholder="e.g., https://arxiv.org/pdf/2201.04234")
        pdf_url_output = gr.Markdown(label="OCR Result (Markdown)")
        pdf_url_button = gr.Button("Process PDF")
        pdf_url_button.click(ocr_pdf_url, inputs=pdf_url_input, outputs=pdf_url_output)

    with gr.Tab("OCR with Uploaded PDF"):
        pdf_file_input = gr.File(label="Upload PDF", file_types=[".pdf"])
        pdf_file_output = gr.Markdown(label="OCR Result (Markdown)")
        pdf_file_button = gr.Button("Process Uploaded PDF")
        pdf_file_button.click(ocr_uploaded_pdf, inputs=pdf_file_input, outputs=pdf_file_output)

    with gr.Tab("OCR with Image URL"):
        image_url_input = gr.Textbox(label="Image URL", placeholder="e.g., https://example.com/image.jpg")
        image_url_output = gr.Markdown(label="OCR Result (Markdown)")
        image_url_button = gr.Button("Process Image")
        image_url_button.click(ocr_image_url, inputs=image_url_input, outputs=image_url_output)

    with gr.Tab("OCR with Uploaded Image"):
        image_file_input = gr.File(label="Upload Image", file_types=[".jpg", ".png"])
        image_file_output = gr.Markdown(label="OCR Result (Markdown)")
        image_file_button = gr.Button("Process Uploaded Image")
        image_file_button.click(ocr_uploaded_image, inputs=image_file_input, outputs=image_file_output)

    with gr.Tab("Document Understanding"):
        doc_url_input = gr.Textbox(label="Document URL", placeholder="e.g., https://arxiv.org/pdf/1805.04770")
        question_input = gr.Textbox(label="Question", placeholder="e.g., What is the last sentence?")
        doc_output = gr.Textbox(label="Answer")  # Keep as Textbox for plain text
        doc_button = gr.Button("Ask Question")
        doc_button.click(document_understanding, inputs=[doc_url_input, question_input], outputs=doc_output)

    with gr.Tab("Structured OCR"):
        struct_image_input = gr.File(label="Upload Image", file_types=[".jpg", ".png"])
        struct_output = gr.Markdown(label="Structured JSON Output (Markdown)")
        struct_button = gr.Button("Get Structured Output")
        struct_button.click(structured_ocr, inputs=struct_image_input, outputs=struct_output)

# Launch the app
demo.launch(share=True, debug=True)