Spaces:
Running
Running
File size: 13,547 Bytes
f1996dd f8fae95 d0b423f e3bc0c6 0253cad e3bc0c6 e851339 220b45d 0253cad e3bc0c6 220b45d e3bc0c6 f1996dd 220b45d e851339 220b45d 58a3898 f8fae95 0253cad 58a3898 f1996dd 220b45d 005a056 220b45d f8fae95 220b45d f8fae95 468fb8d 220b45d f8fae95 220b45d f8fae95 220b45d 0253cad f8fae95 58a3898 f8fae95 0253cad 58a3898 220b45d 0253cad 220b45d 58a3898 0253cad 58a3898 220b45d 005a056 0253cad 005a056 96d9245 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 7f3a813 220b45d f8fae95 220b45d 7f3a813 0253cad f8fae95 220b45d f8fae95 220b45d f8fae95 0253cad 220b45d f8fae95 220b45d f8fae95 220b45d e851339 0253cad e851339 58a3898 e851339 0253cad e851339 58a3898 e851339 58a3898 e851339 005a056 58a3898 e851339 58a3898 e851339 220b45d f8fae95 f1996dd 220b45d f8fae95 220b45d ad2f309 ce879d8 ad2f309 f8fae95 ef7763d e851339 58a3898 f8fae95 e851339 f8fae95 e851339 f8fae95 e851339 220b45d ad2f309 220b45d e851339 58a3898 e851339 220b45d 0253cad 96d9245 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import base64
import gradio as gr
from mistralai import Mistral, DocumentURLChunk, ImageURLChunk, TextChunk
from mistralai.models import OCRResponse
from pathlib import Path
import pycountry
import json
import logging
from tenacity import retry, stop_after_attempt, wait_fixed
import tempfile
from typing import Union, Dict, List
from contextlib import contextmanager
import requests
# Constants
DEFAULT_LANGUAGE = "English"
SUPPORTED_IMAGE_TYPES = [".jpg", ".png"]
SUPPORTED_PDF_TYPES = [".pdf"]
TEMP_FILE_EXPIRY = 7200 # 2 hours in seconds
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class OCRProcessor:
def __init__(self, api_key: str):
if not api_key:
raise ValueError("API key must be provided")
self.api_key = api_key
self.client = Mistral(api_key=self.api_key)
try:
models = self.client.models.list() # Validate API key
if not models:
raise ValueError("No models available")
except Exception as e:
raise ValueError(f"Invalid API key: {str(e)}")
@staticmethod
def _encode_image(image_path: str) -> str:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
@staticmethod
@contextmanager
def _temp_file(content: bytes, suffix: str, keep_alive: bool = False) -> str:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix, dir=tempfile.gettempdir())
try:
logger.info(f"Creating temp file: {temp_file.name}")
temp_file.write(content)
temp_file.close()
yield temp_file.name
finally:
if not keep_alive and os.path.exists(temp_file.name):
logger.info(f"Cleaning up temp file: {temp_file.name}")
os.unlink(temp_file.name)
else:
logger.info(f"Keeping temp file alive: {temp_file.name}")
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def _call_ocr_api(self, document: Union[DocumentURLChunk, ImageURLChunk]) -> OCRResponse:
try:
return self.client.ocr.process(model="mistral-ocr-latest", document=document, include_image_base64=True)
except Exception as e:
logger.error(f"OCR API call failed: {str(e)}")
raise
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def _call_chat_complete(self, model: str, messages: List[Dict], **kwargs) -> Dict:
try:
return self.client.chat.complete(model=model, messages=messages, **kwargs)
except Exception as e:
logger.error(f"Chat complete API call failed: {str(e)}")
raise
def _get_file_content(self, file_input: Union[str, bytes]) -> bytes:
if isinstance(file_input, str):
if file_input.startswith("http"):
response = requests.get(file_input)
response.raise_for_status()
return response.content
else:
with open(file_input, "rb") as f:
return f.read()
return file_input.read() if hasattr(file_input, 'read') else file_input
def ocr_pdf_url(self, pdf_url: str) -> str:
logger.info(f"Processing PDF URL: {pdf_url}")
try:
response = self._call_ocr_api(DocumentURLChunk(document_url=pdf_url))
return self._get_combined_markdown(response)
except Exception as e:
return self._handle_error("PDF URL processing", e)
def ocr_uploaded_pdf(self, pdf_file: Union[str, bytes]) -> tuple[str, str]:
file_name = getattr(pdf_file, 'name', 'unknown')
logger.info(f"Processing uploaded PDF: {file_name}")
try:
content = self._get_file_content(pdf_file)
with self._temp_file(content, ".pdf", keep_alive=True) as temp_path:
uploaded_file = self.client.files.upload(
file={"file_name": temp_path, "content": open(temp_path, "rb")},
purpose="ocr"
)
signed_url = self.client.files.get_signed_url(file_id=uploaded_file.id, expiry=TEMP_FILE_EXPIRY)
response = self._call_ocr_api(DocumentURLChunk(document_url=signed_url.url))
return self._get_combined_markdown(response), temp_path
except Exception as e:
return self._handle_error("uploaded PDF processing", e), None
def ocr_image_url(self, image_url: str) -> str:
logger.info(f"Processing image URL: {image_url}")
try:
response = self._call_ocr_api(ImageURLChunk(image_url=image_url))
return self._get_combined_markdown(response)
except Exception as e:
return self._handle_error("image URL processing", e)
def ocr_uploaded_image(self, image_file: Union[str, bytes]) -> tuple[str, str]:
file_name = getattr(image_file, 'name', 'unknown')
logger.info(f"Processing uploaded image: {file_name}")
try:
content = self._get_file_content(image_file)
with self._temp_file(content, ".jpg", keep_alive=True) as temp_path:
encoded_image = self._encode_image(temp_path)
base64_url = f"data:image/jpeg;base64,{encoded_image}"
response = self._call_ocr_api(ImageURLChunk(image_url=base64_url))
return self._get_combined_markdown(response), temp_path
except Exception as e:
return self._handle_error("uploaded image processing", e), None
def document_understanding(self, doc_url: str, question: str) -> str:
logger.info(f"Document understanding - URL: {doc_url}, Question: {question}")
try:
messages = [{"role": "user", "content": [
TextChunk(text=question),
DocumentURLChunk(document_url=doc_url)
]}]
response = self._call_chat_complete(model="mistral-small-latest", messages=messages)
return response.choices[0].message.content if response.choices else "No response received"
except Exception as e:
return self._handle_error("document understanding", e)
def structured_ocr(self, image_file: Union[str, bytes]) -> tuple[str, str]:
file_name = getattr(image_file, 'name', 'unknown')
logger.info(f"Processing structured OCR for: {file_name}")
try:
content = self._get_file_content(image_file)
with self._temp_file(content, ".jpg", keep_alive=True) as temp_path:
encoded_image = self._encode_image(temp_path)
base64_url = f"data:image/jpeg;base64,{encoded_image}"
ocr_response = self._call_ocr_api(ImageURLChunk(image_url=base64_url))
markdown = self._get_combined_markdown(ocr_response)
chat_response = self._call_chat_complete(
model="pixtral-12b-latest",
messages=[{
"role": "user",
"content": [
ImageURLChunk(image_url=base64_url),
TextChunk(text=(
f"This is image's OCR in markdown:\n<BEGIN_IMAGE_OCR>\n{markdown}\n<END_IMAGE_OCR>.\n"
"Convert this into a sensible structured json response with file_name, topics, languages, and ocr_contents fields"
))
]
}],
response_format={"type": "json_object"},
temperature=0
)
response_content = chat_response.choices[0].message.content
content = json.loads(response_content)
return self._format_structured_response(temp_path, content), temp_path
except Exception as e:
return self._handle_error("structured OCR", e), None
def _get_combined_markdown(self, response: OCRResponse) -> str:
markdowns = []
for page in response.pages:
image_data = {}
for img in page.images:
image_data[img.id] = img.image_base64
markdown = page.markdown
for img_name, base64_str in image_data.items():
markdown = markdown.replace(f"", f"")
markdowns.append(markdown)
return "\n\n".join(markdowns)
@staticmethod
def _handle_error(context: str, error: Exception) -> str:
logger.error(f"Error in {context}: {str(error)}")
return f"**Error:** {str(error)}"
@staticmethod
def _format_structured_response(file_path: str, content: Dict) -> str:
languages = {lang.alpha_2: lang.name for lang in pycountry.languages if hasattr(lang, 'alpha_2')}
content_languages = content["languages"] if "languages" in content else [DEFAULT_LANGUAGE]
valid_langs = [l for l in content_languages if l in languages.values()]
response = {
"file_name": Path(file_path).name,
"topics": content["topics"] if "topics" in content else [],
"languages": valid_langs or [DEFAULT_LANGUAGE],
"ocr_contents": content["ocr_contents"] if "ocr_contents" in content else {}
}
return f"```json\n{json.dumps(response, indent=4)}\n```"
def create_interface():
with gr.Blocks(title="Mistral OCR & Structured Output App") as demo:
gr.Markdown("# Mistral OCR & Structured Output App")
gr.Markdown("Enter your Mistral API key below to use the app. Extract text from PDFs and images or get structured JSON output.")
gr.Markdown("**Note:** After entering your API key, click 'Set API Key' to validate and use it.")
api_key_input = gr.Textbox(
label="Mistral API Key",
placeholder="Enter your Mistral API key here",
type="password"
)
def initialize_processor(api_key):
try:
processor = OCRProcessor(api_key)
return processor, "**Success:** API key set and validated!"
except ValueError as e:
return None, f"**Error:** {str(e)}"
except Exception as e:
return None, f"**Error:** Unexpected error: {str(e)}"
processor_state = gr.State()
api_status = gr.Markdown("API key not set. Please enter and set your key.")
set_api_button = gr.Button("Set API Key")
set_api_button.click(
fn=initialize_processor,
inputs=api_key_input,
outputs=[processor_state, api_status]
)
tabs = [
("OCR with PDF URL", gr.Textbox, "ocr_pdf_url", "PDF URL", None, None),
("OCR with Uploaded PDF", gr.File, "ocr_uploaded_pdf", "Upload PDF", SUPPORTED_PDF_TYPES, gr.File),
("OCR with Image URL", gr.Textbox, "ocr_image_url", "Image URL", None, None),
("OCR with Uploaded Image", gr.File, "ocr_uploaded_image", "Upload Image", SUPPORTED_IMAGE_TYPES, gr.Image),
("Structured OCR", gr.File, "structured_ocr", "Upload Image", SUPPORTED_IMAGE_TYPES, gr.Image),
]
for name, input_type, fn_name, label, file_types, preview_type in tabs:
with gr.Tab(name):
if input_type == gr.Textbox:
inputs = input_type(label=label, placeholder=f"e.g., https://example.com/{label.lower().replace(' ', '')}")
else:
inputs = input_type(label=label, file_types=file_types)
with gr.Row():
output = gr.Markdown(label="Result")
preview = preview_type(label="Preview") if preview_type else None
button_label = name.replace("OCR with ", "").replace("Structured ", "Get Structured ")
def process_with_api(processor, input_data):
if not processor:
return "**Error:** Please set a valid API key first.", None
fn = getattr(processor, fn_name)
return fn(input_data) # Returns tuple (result, preview_path)
gr.Button(f"Process {button_label}").click(
fn=process_with_api,
inputs=[processor_state, inputs],
outputs=[output, preview] if preview else [output]
)
with gr.Tab("Document Understanding"):
doc_url = gr.Textbox(label="Document URL", placeholder="e.g., https://arxiv.org/pdf/1805.04770")
question = gr.Textbox(label="Question", placeholder="e.g., What is the last sentence?")
output = gr.Markdown(label="Answer")
def doc_understanding_with_api(processor, url, q):
if not processor:
return "**Error:** Please set a valid API key first."
return processor.document_understanding(url, q)
gr.Button("Ask Question").click(
fn=doc_understanding_with_api,
inputs=[processor_state, doc_url, question],
outputs=output
)
return demo
if __name__ == "__main__":
print(f"===== Application Startup at {os.environ.get('START_TIME', 'Unknown')} =====")
create_interface().launch(share=True, debug=True) |