Spaces:
Running
Running
File size: 15,121 Bytes
f1996dd f8fae95 d0b423f e3bc0c6 3cd8625 e3bc0c6 3cd8625 220b45d 0253cad 971b317 3cd8625 e3bc0c6 220b45d 3cd8625 220b45d 5361f7d 3cd8625 971b317 3cd8625 971b317 3cd8625 e3bc0c6 f1996dd 220b45d e851339 3cd8625 220b45d 3cd8625 58a3898 3cd8625 f8fae95 0253cad 3cd8625 f1996dd 220b45d 3cd8625 274798e 971b317 274798e 971b317 274798e 3cd8625 274798e 3cd8625 971b317 3cd8625 274798e 3cd8625 971b317 3cd8625 971b317 3cd8625 220b45d 3cd8625 f8fae95 3cd8625 220b45d 3cd8625 220b45d 3cd8625 220b45d 3cd8625 220b45d 3cd8625 971b317 274798e 971b317 274798e 971b317 220b45d 3cd8625 220b45d 3cd8625 220b45d 3cd8625 971b317 274798e 971b317 220b45d 3cd8625 220b45d f8fae95 220b45d 3cd8625 220b45d 3cd8625 220b45d 3cd8625 971b317 274798e 971b317 3cd8625 971b317 3cd8625 971b317 3cd8625 971b317 3cd8625 971b317 3cd8625 220b45d f8fae95 3cd8625 220b45d 3cd8625 220b45d 3cd8625 0253cad 220b45d 3cd8625 220b45d 3cd8625 220b45d 3cd8625 971b317 3cd8625 0253cad 971b317 e851339 971b317 3cd8625 e851339 3cd8625 e851339 3cd8625 971b317 e851339 220b45d 971b317 3cd8625 e851339 971b317 3cd8625 971b317 3cd8625 971b317 e851339 220b45d 971b317 3cd8625 971b317 3cd8625 971b317 3cd8625 971b317 220b45d 3cd8625 2e2b7f9 3cd8625 2e2b7f9 3cd8625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import os
import base64
import gradio as gr
from mistralai import Mistral, DocumentURLChunk, ImageURLChunk, TextChunk
from mistralai.models import OCRResponse
from pathlib import Path
import pycountry
import json
import logging
from tenacity import retry, stop_after_attempt, wait_exponential
import tempfile
from typing import Union, Dict, List, Optional, Tuple
from contextlib import contextmanager
import requests
import shutil
from concurrent.futures import ThreadPoolExecutor
import time
# Constants
DEFAULT_LANGUAGE = "English"
SUPPORTED_IMAGE_TYPES = [".jpg", ".png", ".jpeg"]
SUPPORTED_PDF_TYPES = [".pdf"]
TEMP_FILE_EXPIRY = 7200 # 2 hours in seconds
UPLOAD_FOLDER = "./uploads"
MAX_FILE_SIZE = 50 * 1024 * 1024 # 50MB
MAX_PDF_PAGES = 50
# Configuration
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
class OCRProcessor:
def __init__(self, api_key: str):
self.api_key = self._validate_api_key(api_key)
self.client = Mistral(api_key=self.api_key)
self._validate_client()
@staticmethod
def _validate_api_key(api_key: str) -> str:
if not api_key or not isinstance(api_key, str):
raise ValueError("Valid API key must be provided")
return api_key
def _validate_client(self) -> None:
try:
models = self.client.models.list()
if not models:
raise ValueError("No models available")
except Exception as e:
raise ValueError(f"API key validation failed: {str(e)}")
@staticmethod
def _check_file_size(file_input: Union[str, bytes]) -> None:
if isinstance(file_input, str) and os.path.exists(file_input):
size = os.path.getsize(file_input)
elif hasattr(file_input, 'read'):
size = len(file_input.read())
file_input.seek(0) # Reset file pointer
else:
size = len(file_input)
if size > MAX_FILE_SIZE:
raise ValueError(f"File size exceeds {MAX_FILE_SIZE/1024/1024}MB limit")
@staticmethod
def _encode_image(image_path: str) -> Optional[str]:
try:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
except Exception as e:
logger.error(f"Error encoding image {image_path}: {str(e)}")
return None
@staticmethod
def _save_uploaded_file(file_input: Union[str, bytes], filename: str) -> str:
clean_filename = os.path.basename(filename).replace(os.sep, "_")
file_path = os.path.join(UPLOAD_FOLDER, f"{int(time.time())}_{clean_filename}")
try:
if isinstance(file_input, str) and file_input.startswith("http"):
response = requests.get(file_input, timeout=10)
response.raise_for_status()
with open(file_path, 'wb') as f:
f.write(response.content)
elif isinstance(file_input, str) and os.path.exists(file_input):
shutil.copy2(file_input, file_path)
else:
with open(file_path, 'wb') as f:
if hasattr(file_input, 'read'):
shutil.copyfileobj(file_input, f)
else:
f.write(file_input)
if not os.path.exists(file_path):
raise FileNotFoundError(f"Failed to save file at {file_path}")
return file_path
except Exception as e:
logger.error(f"Error saving file {filename}: {str(e)}")
raise
@staticmethod
def _pdf_to_images(pdf_path: str) -> List[str]:
try:
pdf_document = fitz.open(pdf_path)
if pdf_document.page_count > MAX_PDF_PAGES:
pdf_document.close()
raise ValueError(f"PDF exceeds maximum page limit of {MAX_PDF_PAGES}")
with ThreadPoolExecutor() as executor:
image_paths = list(executor.map(
lambda i: OCRProcessor._convert_page(pdf_path, i),
range(pdf_document.page_count)
))
pdf_document.close()
return [path for path in image_paths if path]
except Exception as e:
logger.error(f"Error converting PDF to images: {str(e)}")
return []
@staticmethod
def _convert_page(pdf_path: str, page_num: int) -> Optional[str]:
try:
pdf_document = fitz.open(pdf_path)
page = pdf_document[page_num]
pix = page.get_pixmap(dpi=150)
image_path = os.path.join(UPLOAD_FOLDER, f"page_{page_num + 1}_{int(time.time())}.png")
pix.save(image_path)
pdf_document.close()
return image_path
except Exception as e:
logger.error(f"Error converting page {page_num}: {str(e)}")
return None
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=2, max=10))
def _call_ocr_api(self, document: Union[DocumentURLChunk, ImageURLChunk]) -> OCRResponse:
return self.client.ocr.process(
model="mistral-ocr-latest",
document=document,
include_image_base64=True
)
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=2, max=10))
def _call_chat_complete(self, model: str, messages: List[Dict], **kwargs) -> Dict:
return self.client.chat.complete(model=model, messages=messages, **kwargs)
def ocr_uploaded_pdf(self, pdf_file: Union[str, bytes]) -> Tuple[str, List[str]]:
file_name = getattr(pdf_file, 'name', f"pdf_{int(time.time())}.pdf")
logger.info(f"Processing uploaded PDF: {file_name}")
try:
self._check_file_size(pdf_file)
pdf_path = self._save_uploaded_file(pdf_file, file_name)
logger.info(f"Saved PDF to: {pdf_path}")
if not os.path.exists(pdf_path):
raise FileNotFoundError(f"Saved PDF not found at: {pdf_path}")
image_paths = self._pdf_to_images(pdf_path)
with open(pdf_path, "rb") as f:
uploaded_file = self.client.files.upload(
file={"file_name": file_name, "content": f},
purpose="ocr"
)
signed_url = self.client.files.get_signed_url(file_id=uploaded_file.id, expiry=TEMP_FILE_EXPIRY)
response = self._call_ocr_api(DocumentURLChunk(document_url=signed_url.url))
return self._get_combined_markdown(response), image_paths
except Exception as e:
return self._handle_error("PDF processing", e), []
def ocr_uploaded_image(self, image_file: Union[str, bytes]) -> Tuple[str, str]:
file_name = getattr(image_file, 'name', f"image_{int(time.time())}.jpg")
logger.info(f"Processing uploaded image: {file_name}")
try:
self._check_file_size(image_file)
image_path = self._save_uploaded_file(image_file, file_name)
encoded_image = self._encode_image(image_path)
if not encoded_image:
raise ValueError("Failed to encode image")
base64_url = f"data:image/jpeg;base64,{encoded_image}"
response = self._call_ocr_api(ImageURLChunk(image_url=base64_url))
return self._get_combined_markdown(response), image_path
except Exception as e:
return self._handle_error("image processing", e), None
def document_understanding(self, doc_url: str, question: str) -> str:
try:
messages = [{"role": "user", "content": [
TextChunk(text=question),
DocumentURLChunk(document_url=doc_url)
]}]
response = self._call_chat_complete(
model="mistral-small-latest",
messages=messages,
temperature=0.1
)
return response.choices[0].message.content
except Exception as e:
return self._handle_error("document understanding", e)
def structured_ocr(self, image_file: Union[str, bytes]) -> Tuple[str, str]:
file_name = getattr(image_file, 'name', f"image_{int(time.time())}.jpg")
try:
self._check_file_size(image_file)
image_path = self._save_uploaded_file(image_file, file_name)
encoded_image = self._encode_image(image_path)
if not encoded_image:
raise ValueError("Failed to encode image")
base64_url = f"data:image/jpeg;base64,{encoded_image}"
ocr_response = self._call_ocr_api(ImageURLChunk(image_url=base64_url))
markdown = self._get_combined_markdown(ocr_response)
chat_response = self._call_chat_complete(
model="pixtral-12b-latest",
messages=[{
"role": "user",
"content": [
ImageURLChunk(image_url=base64_url),
TextChunk(text=(
f"This is image's OCR in markdown:\n<BEGIN_IMAGE_OCR>\n{markdown}\n<END_IMAGE_OCR>.\n"
"Convert this into a structured JSON response with file_name, topics, languages, and ocr_contents fields"
))
]
}],
response_format={"type": "json_object"},
temperature=0.1
)
return self._format_structured_response(image_path, json.loads(chat_response.choices[0].message.content)), image_path
except Exception as e:
return self._handle_error("structured OCR", e), None
@staticmethod
def _get_combined_markdown(response: OCRResponse) -> str:
return "\n\n".join(
page.markdown for page in response.pages
if page.markdown.strip()
) or "No text detected"
@staticmethod
def _handle_error(context: str, error: Exception) -> str:
logger.error(f"Error in {context}: {str(error)}")
return f"**Error in {context}:** {str(error)}"
@staticmethod
def _format_structured_response(file_path: str, content: Dict) -> str:
languages = {lang.alpha_2: lang.name for lang in pycountry.languages if hasattr(lang, 'alpha_2')}
content_languages = content.get("languages", [DEFAULT_LANGUAGE])
valid_langs = [l for l in content_languages if l in languages.values()] or [DEFAULT_LANGUAGE]
response = {
"file_name": Path(file_path).name,
"topics": content.get("topics", []),
"languages": valid_langs,
"ocr_contents": content.get("ocr_contents", {})
}
return f"```json\n{json.dumps(response, indent=2, ensure_ascii=False)}\n```"
def create_interface():
css = """
.output-markdown {font-size: 14px; max-height: 500px; overflow-y: auto;}
.status {color: #666; font-style: italic;}
"""
with gr.Blocks(title="Mistral OCR App", css=css) as demo:
gr.Markdown("# Mistral OCR App\nUpload images or PDFs for OCR processing")
with gr.Row():
api_key = gr.Textbox(label="Mistral API Key", type="password", placeholder="Enter your API key")
set_key_btn = gr.Button("Set API Key", variant="primary")
processor_state = gr.State()
status = gr.Markdown("Please enter API key", elem_classes="status")
def init_processor(key):
try:
processor = OCRProcessor(key)
return processor, "✅ API key validated successfully"
except Exception as e:
return None, f"❌ Error: {str(e)}"
set_key_btn.click(
fn=init_processor,
inputs=api_key,
outputs=[processor_state, status]
)
with gr.Tab("Image OCR"):
with gr.Row():
image_input = gr.File(
label=f"Upload Image (max {MAX_FILE_SIZE/1024/1024}MB)",
file_types=SUPPORTED_IMAGE_TYPES
)
image_preview = gr.Image(label="Preview", height=300)
image_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
process_image_btn = gr.Button("Process Image", variant="primary")
def process_image(processor, image):
if not processor or not image:
return "Please set API key and upload an image", None
return processor.ocr_uploaded_image(image)
process_image_btn.click(
fn=process_image,
inputs=[processor_state, image_input],
outputs=[image_output, image_preview]
)
with gr.Tab("PDF OCR"):
with gr.Row():
pdf_input = gr.File(
label=f"Upload PDF (max {MAX_FILE_SIZE/1024/1024}MB, {MAX_PDF_PAGES} pages)",
file_types=SUPPORTED_PDF_TYPES
)
pdf_gallery = gr.Gallery(label="PDF Pages", height=300)
pdf_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
process_pdf_btn = gr.Button("Process PDF", variant="primary")
def process_pdf(processor, pdf):
if not processor or not pdf:
return "Please set API key and upload a PDF", []
return processor.ocr_uploaded_pdf(pdf)
process_pdf_btn.click(
fn=process_pdf,
inputs=[processor_state, pdf_input],
outputs=[pdf_output, pdf_gallery]
)
with gr.Tab("Structured OCR"):
structured_input = gr.File(
label=f"Upload Image for Structured OCR (max {MAX_FILE_SIZE/1024/1024}MB)",
file_types=SUPPORTED_IMAGE_TYPES
)
structured_output = gr.Markdown(label="Structured Result", elem_classes="output-markdown")
structured_preview = gr.Image(label="Preview", height=300)
process_structured_btn = gr.Button("Process Structured OCR", variant="primary")
def process_structured(processor, image):
if not processor or not image:
return "Please set API key and upload an image", None
return processor.structured_ocr(image)
process_structured_btn.click(
fn=process_structured,
inputs=[processor_state, structured_input],
outputs=[structured_output, structured_preview]
)
return demo
if __name__ == "__main__":
os.environ['START_TIME'] = time.strftime('%Y-%m-%d %H:%M:%S')
print(f"===== Application Startup at {os.environ['START_TIME']} =====")
create_interface().launch(
share=True,
debug=True,
) |