File size: 15,121 Bytes
f1996dd
 
 
f8fae95
d0b423f
 
 
 
e3bc0c6
3cd8625
e3bc0c6
3cd8625
220b45d
0253cad
971b317
3cd8625
 
e3bc0c6
220b45d
 
3cd8625
220b45d
 
5361f7d
3cd8625
 
971b317
3cd8625
971b317
3cd8625
 
 
 
 
e3bc0c6
f1996dd
220b45d
e851339
3cd8625
220b45d
3cd8625
 
 
 
 
 
 
 
 
58a3898
3cd8625
f8fae95
 
0253cad
3cd8625
f1996dd
220b45d
3cd8625
 
 
 
 
 
 
 
 
 
 
 
 
274798e
 
 
 
 
 
971b317
 
 
274798e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
971b317
 
 
274798e
 
 
 
 
 
 
 
 
 
 
3cd8625
274798e
 
 
 
3cd8625
 
 
971b317
 
3cd8625
274798e
3cd8625
 
971b317
3cd8625
971b317
3cd8625
 
220b45d
3cd8625
f8fae95
3cd8625
 
 
 
 
220b45d
3cd8625
220b45d
3cd8625
220b45d
3cd8625
 
220b45d
 
3cd8625
971b317
274798e
 
 
 
 
971b317
 
274798e
 
 
 
 
971b317
 
 
220b45d
3cd8625
220b45d
3cd8625
 
220b45d
 
3cd8625
971b317
 
274798e
 
971b317
 
 
220b45d
3cd8625
220b45d
 
 
 
f8fae95
 
220b45d
3cd8625
 
 
 
 
 
220b45d
 
 
3cd8625
 
220b45d
3cd8625
971b317
 
274798e
 
971b317
3cd8625
971b317
 
 
 
 
 
3cd8625
971b317
 
 
 
3cd8625
971b317
 
 
 
3cd8625
971b317
3cd8625
220b45d
f8fae95
 
3cd8625
 
 
 
 
 
220b45d
 
 
 
3cd8625
220b45d
 
 
 
3cd8625
 
0253cad
220b45d
 
3cd8625
 
 
220b45d
3cd8625
220b45d
 
3cd8625
 
 
 
 
 
 
 
 
 
 
971b317
 
3cd8625
0253cad
971b317
e851339
971b317
3cd8625
e851339
3cd8625
e851339
3cd8625
971b317
 
 
e851339
220b45d
971b317
3cd8625
 
 
 
 
 
 
 
e851339
971b317
3cd8625
 
 
971b317
3cd8625
971b317
 
 
e851339
220b45d
971b317
3cd8625
 
 
 
 
 
 
 
971b317
 
3cd8625
 
 
971b317
3cd8625
971b317
 
 
 
220b45d
3cd8625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2b7f9
3cd8625
2e2b7f9
 
3cd8625
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import base64
import gradio as gr
from mistralai import Mistral, DocumentURLChunk, ImageURLChunk, TextChunk
from mistralai.models import OCRResponse
from pathlib import Path
import pycountry
import json
import logging
from tenacity import retry, stop_after_attempt, wait_exponential
import tempfile
from typing import Union, Dict, List, Optional, Tuple
from contextlib import contextmanager
import requests
import shutil
from concurrent.futures import ThreadPoolExecutor
import time

# Constants
DEFAULT_LANGUAGE = "English"
SUPPORTED_IMAGE_TYPES = [".jpg", ".png", ".jpeg"]
SUPPORTED_PDF_TYPES = [".pdf"]
TEMP_FILE_EXPIRY = 7200  # 2 hours in seconds
UPLOAD_FOLDER = "./uploads"
MAX_FILE_SIZE = 50 * 1024 * 1024  # 50MB
MAX_PDF_PAGES = 50

# Configuration
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

class OCRProcessor:
    def __init__(self, api_key: str):
        self.api_key = self._validate_api_key(api_key)
        self.client = Mistral(api_key=self.api_key)
        self._validate_client()

    @staticmethod
    def _validate_api_key(api_key: str) -> str:
        if not api_key or not isinstance(api_key, str):
            raise ValueError("Valid API key must be provided")
        return api_key

    def _validate_client(self) -> None:
        try:
            models = self.client.models.list()
            if not models:
                raise ValueError("No models available")
        except Exception as e:
            raise ValueError(f"API key validation failed: {str(e)}")

    @staticmethod
    def _check_file_size(file_input: Union[str, bytes]) -> None:
        if isinstance(file_input, str) and os.path.exists(file_input):
            size = os.path.getsize(file_input)
        elif hasattr(file_input, 'read'):
            size = len(file_input.read())
            file_input.seek(0)  # Reset file pointer
        else:
            size = len(file_input)
        if size > MAX_FILE_SIZE:
            raise ValueError(f"File size exceeds {MAX_FILE_SIZE/1024/1024}MB limit")

    @staticmethod
    def _encode_image(image_path: str) -> Optional[str]:
        try:
            with open(image_path, "rb") as image_file:
                return base64.b64encode(image_file.read()).decode('utf-8')
        except Exception as e:
            logger.error(f"Error encoding image {image_path}: {str(e)}")
            return None

    @staticmethod
    def _save_uploaded_file(file_input: Union[str, bytes], filename: str) -> str:
        clean_filename = os.path.basename(filename).replace(os.sep, "_")
        file_path = os.path.join(UPLOAD_FOLDER, f"{int(time.time())}_{clean_filename}")
        
        try:
            if isinstance(file_input, str) and file_input.startswith("http"):
                response = requests.get(file_input, timeout=10)
                response.raise_for_status()
                with open(file_path, 'wb') as f:
                    f.write(response.content)
            elif isinstance(file_input, str) and os.path.exists(file_input):
                shutil.copy2(file_input, file_path)
            else:
                with open(file_path, 'wb') as f:
                    if hasattr(file_input, 'read'):
                        shutil.copyfileobj(file_input, f)
                    else:
                        f.write(file_input)
            if not os.path.exists(file_path):
                raise FileNotFoundError(f"Failed to save file at {file_path}")
            return file_path
        except Exception as e:
            logger.error(f"Error saving file {filename}: {str(e)}")
            raise

    @staticmethod
    def _pdf_to_images(pdf_path: str) -> List[str]:
        try:
            pdf_document = fitz.open(pdf_path)
            if pdf_document.page_count > MAX_PDF_PAGES:
                pdf_document.close()
                raise ValueError(f"PDF exceeds maximum page limit of {MAX_PDF_PAGES}")
            
            with ThreadPoolExecutor() as executor:
                image_paths = list(executor.map(
                    lambda i: OCRProcessor._convert_page(pdf_path, i),
                    range(pdf_document.page_count)
                ))
            pdf_document.close()
            return [path for path in image_paths if path]
        except Exception as e:
            logger.error(f"Error converting PDF to images: {str(e)}")
            return []

    @staticmethod
    def _convert_page(pdf_path: str, page_num: int) -> Optional[str]:
        try:
            pdf_document = fitz.open(pdf_path)
            page = pdf_document[page_num]
            pix = page.get_pixmap(dpi=150)
            image_path = os.path.join(UPLOAD_FOLDER, f"page_{page_num + 1}_{int(time.time())}.png")
            pix.save(image_path)
            pdf_document.close()
            return image_path
        except Exception as e:
            logger.error(f"Error converting page {page_num}: {str(e)}")
            return None

    @retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=2, max=10))
    def _call_ocr_api(self, document: Union[DocumentURLChunk, ImageURLChunk]) -> OCRResponse:
        return self.client.ocr.process(
            model="mistral-ocr-latest",
            document=document,
            include_image_base64=True
        )

    @retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=2, max=10))
    def _call_chat_complete(self, model: str, messages: List[Dict], **kwargs) -> Dict:
        return self.client.chat.complete(model=model, messages=messages, **kwargs)

    def ocr_uploaded_pdf(self, pdf_file: Union[str, bytes]) -> Tuple[str, List[str]]:
        file_name = getattr(pdf_file, 'name', f"pdf_{int(time.time())}.pdf")
        logger.info(f"Processing uploaded PDF: {file_name}")
        try:
            self._check_file_size(pdf_file)
            pdf_path = self._save_uploaded_file(pdf_file, file_name)
            logger.info(f"Saved PDF to: {pdf_path}")
            
            if not os.path.exists(pdf_path):
                raise FileNotFoundError(f"Saved PDF not found at: {pdf_path}")
            
            image_paths = self._pdf_to_images(pdf_path)
            
            with open(pdf_path, "rb") as f:
                uploaded_file = self.client.files.upload(
                    file={"file_name": file_name, "content": f},
                    purpose="ocr"
                )
            signed_url = self.client.files.get_signed_url(file_id=uploaded_file.id, expiry=TEMP_FILE_EXPIRY)
            response = self._call_ocr_api(DocumentURLChunk(document_url=signed_url.url))
            return self._get_combined_markdown(response), image_paths
        except Exception as e:
            return self._handle_error("PDF processing", e), []

    def ocr_uploaded_image(self, image_file: Union[str, bytes]) -> Tuple[str, str]:
        file_name = getattr(image_file, 'name', f"image_{int(time.time())}.jpg")
        logger.info(f"Processing uploaded image: {file_name}")
        try:
            self._check_file_size(image_file)
            image_path = self._save_uploaded_file(image_file, file_name)
            encoded_image = self._encode_image(image_path)
            if not encoded_image:
                raise ValueError("Failed to encode image")
            base64_url = f"data:image/jpeg;base64,{encoded_image}"
            response = self._call_ocr_api(ImageURLChunk(image_url=base64_url))
            return self._get_combined_markdown(response), image_path
        except Exception as e:
            return self._handle_error("image processing", e), None

    def document_understanding(self, doc_url: str, question: str) -> str:
        try:
            messages = [{"role": "user", "content": [
                TextChunk(text=question),
                DocumentURLChunk(document_url=doc_url)
            ]}]
            response = self._call_chat_complete(
                model="mistral-small-latest",
                messages=messages,
                temperature=0.1
            )
            return response.choices[0].message.content
        except Exception as e:
            return self._handle_error("document understanding", e)

    def structured_ocr(self, image_file: Union[str, bytes]) -> Tuple[str, str]:
        file_name = getattr(image_file, 'name', f"image_{int(time.time())}.jpg")
        try:
            self._check_file_size(image_file)
            image_path = self._save_uploaded_file(image_file, file_name)
            encoded_image = self._encode_image(image_path)
            if not encoded_image:
                raise ValueError("Failed to encode image")
            base64_url = f"data:image/jpeg;base64,{encoded_image}"
            
            ocr_response = self._call_ocr_api(ImageURLChunk(image_url=base64_url))
            markdown = self._get_combined_markdown(ocr_response)

            chat_response = self._call_chat_complete(
                model="pixtral-12b-latest",
                messages=[{
                    "role": "user",
                    "content": [
                        ImageURLChunk(image_url=base64_url),
                        TextChunk(text=(
                            f"This is image's OCR in markdown:\n<BEGIN_IMAGE_OCR>\n{markdown}\n<END_IMAGE_OCR>.\n"
                            "Convert this into a structured JSON response with file_name, topics, languages, and ocr_contents fields"
                        ))
                    ]
                }],
                response_format={"type": "json_object"},
                temperature=0.1
            )
            return self._format_structured_response(image_path, json.loads(chat_response.choices[0].message.content)), image_path
        except Exception as e:
            return self._handle_error("structured OCR", e), None

    @staticmethod
    def _get_combined_markdown(response: OCRResponse) -> str:
        return "\n\n".join(
            page.markdown for page in response.pages
            if page.markdown.strip()
        ) or "No text detected"

    @staticmethod
    def _handle_error(context: str, error: Exception) -> str:
        logger.error(f"Error in {context}: {str(error)}")
        return f"**Error in {context}:** {str(error)}"

    @staticmethod
    def _format_structured_response(file_path: str, content: Dict) -> str:
        languages = {lang.alpha_2: lang.name for lang in pycountry.languages if hasattr(lang, 'alpha_2')}
        content_languages = content.get("languages", [DEFAULT_LANGUAGE])
        valid_langs = [l for l in content_languages if l in languages.values()] or [DEFAULT_LANGUAGE]

        response = {
            "file_name": Path(file_path).name,
            "topics": content.get("topics", []),
            "languages": valid_langs,
            "ocr_contents": content.get("ocr_contents", {})
        }
        return f"```json\n{json.dumps(response, indent=2, ensure_ascii=False)}\n```"

def create_interface():
    css = """
    .output-markdown {font-size: 14px; max-height: 500px; overflow-y: auto;}
    .status {color: #666; font-style: italic;}
    """
    
    with gr.Blocks(title="Mistral OCR App", css=css) as demo:
        gr.Markdown("# Mistral OCR App\nUpload images or PDFs for OCR processing")
        
        with gr.Row():
            api_key = gr.Textbox(label="Mistral API Key", type="password", placeholder="Enter your API key")
            set_key_btn = gr.Button("Set API Key", variant="primary")
        
        processor_state = gr.State()
        status = gr.Markdown("Please enter API key", elem_classes="status")

        def init_processor(key):
            try:
                processor = OCRProcessor(key)
                return processor, "✅ API key validated successfully"
            except Exception as e:
                return None, f"❌ Error: {str(e)}"

        set_key_btn.click(
            fn=init_processor,
            inputs=api_key,
            outputs=[processor_state, status]
        )

        with gr.Tab("Image OCR"):
            with gr.Row():
                image_input = gr.File(
                    label=f"Upload Image (max {MAX_FILE_SIZE/1024/1024}MB)",
                    file_types=SUPPORTED_IMAGE_TYPES
                )
                image_preview = gr.Image(label="Preview", height=300)
            image_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
            process_image_btn = gr.Button("Process Image", variant="primary")

            def process_image(processor, image):
                if not processor or not image:
                    return "Please set API key and upload an image", None
                return processor.ocr_uploaded_image(image)

            process_image_btn.click(
                fn=process_image,
                inputs=[processor_state, image_input],
                outputs=[image_output, image_preview]
            )

        with gr.Tab("PDF OCR"):
            with gr.Row():
                pdf_input = gr.File(
                    label=f"Upload PDF (max {MAX_FILE_SIZE/1024/1024}MB, {MAX_PDF_PAGES} pages)",
                    file_types=SUPPORTED_PDF_TYPES
                )
                pdf_gallery = gr.Gallery(label="PDF Pages", height=300)
            pdf_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
            process_pdf_btn = gr.Button("Process PDF", variant="primary")

            def process_pdf(processor, pdf):
                if not processor or not pdf:
                    return "Please set API key and upload a PDF", []
                return processor.ocr_uploaded_pdf(pdf)

            process_pdf_btn.click(
                fn=process_pdf,
                inputs=[processor_state, pdf_input],
                outputs=[pdf_output, pdf_gallery]
            )

        with gr.Tab("Structured OCR"):
            structured_input = gr.File(
                label=f"Upload Image for Structured OCR (max {MAX_FILE_SIZE/1024/1024}MB)",
                file_types=SUPPORTED_IMAGE_TYPES
            )
            structured_output = gr.Markdown(label="Structured Result", elem_classes="output-markdown")
            structured_preview = gr.Image(label="Preview", height=300)
            process_structured_btn = gr.Button("Process Structured OCR", variant="primary")

            def process_structured(processor, image):
                if not processor or not image:
                    return "Please set API key and upload an image", None
                return processor.structured_ocr(image)

            process_structured_btn.click(
                fn=process_structured,
                inputs=[processor_state, structured_input],
                outputs=[structured_output, structured_preview]
            )

    return demo

if __name__ == "__main__":
    os.environ['START_TIME'] = time.strftime('%Y-%m-%d %H:%M:%S')
    print(f"===== Application Startup at {os.environ['START_TIME']} =====")
    create_interface().launch(
        share=True,
        debug=True,
    )