import spaces import gradio as gr from phi3_instruct_graph import MODEL_LIST, Phi3InstructGraph import rapidjson from pyvis.network import Network import networkx as nx import spacy from spacy import displacy from spacy.tokens import Span import random import os import pickle # Constants TITLE = "🌐 GraphMind: Phi-3 Instruct Graph Explorer" SUBTITLE = "✨ Extract and visualize knowledge graphs from any text in multiple languages" # Basic CSS for styling CUSTOM_CSS = """ .gradio-container { font-family: 'Segoe UI', Roboto, sans-serif; } """ # Cache directory and file paths CACHE_DIR = "cache" EXAMPLE_CACHE_FILE = os.path.join(CACHE_DIR, "first_example_cache.pkl") # Create cache directory if it doesn't exist os.makedirs(CACHE_DIR, exist_ok=True) # Color utilities def get_random_light_color(): r = random.randint(140, 255) g = random.randint(140, 255) b = random.randint(140, 255) return f"#{r:02x}{g:02x}{b:02x}" # Text preprocessing def handle_text(text): return " ".join(text.split()) # Main processing functions @spaces.GPU def extract(text, model): try: model = Phi3InstructGraph(model=model) result = model.extract(text) return rapidjson.loads(result) except Exception as e: raise gr.Error(f"Extraction error: {str(e)}") def find_token_indices(doc, substring, text): result = [] start_index = text.find(substring) while start_index != -1: end_index = start_index + len(substring) start_token = None end_token = None for token in doc: if token.idx == start_index: start_token = token.i if token.idx + len(token) == end_index: end_token = token.i + 1 if start_token is not None and end_token is not None: result.append({ "start": start_token, "end": end_token }) # Search for next occurrence start_index = text.find(substring, end_index) return result def create_custom_entity_viz(data, full_text): nlp = spacy.blank("xx") doc = nlp(full_text) spans = [] colors = {} for node in data["nodes"]: entity_spans = find_token_indices(doc, node["id"], full_text) for dataentity in entity_spans: start = dataentity["start"] end = dataentity["end"] if start < len(doc) and end <= len(doc): # Check for overlapping spans overlapping = any(s.start < end and start < s.end for s in spans) if not overlapping: span = Span(doc, start, end, label=node["type"]) spans.append(span) if node["type"] not in colors: colors[node["type"]] = get_random_light_color() doc.set_ents(spans, default="unmodified") doc.spans["sc"] = spans options = { "colors": colors, "ents": list(colors.keys()), "style": "ent", "manual": True } html = displacy.render(doc, style="span", options=options) # Add custom styling to the entity visualization styled_html = f"""
{html}
""" return styled_html def create_graph(json_data): G = nx.Graph() # Add nodes with tooltips for node in json_data['nodes']: G.add_node(node['id'], title=f"{node['type']}: {node['detailed_type']}") # Add edges with labels for edge in json_data['edges']: G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label']) # Create network visualization nt = Network( width="100%", height="700px", directed=True, notebook=False, bgcolor="#f8fafc", font_color="#1e293b" ) # Configure network display nt.from_nx(G) nt.barnes_hut( gravity=-3000, central_gravity=0.3, spring_length=50, spring_strength=0.001, damping=0.09, overlap=0, ) # Customize edge appearance for edge in nt.edges: edge['width'] = 2 edge['arrows'] = {'to': {'enabled': True, 'type': 'arrow'}} edge['color'] = {'color': '#6366f1', 'highlight': '#4f46e5'} edge['font'] = {'size': 12, 'color': '#4b5563', 'face': 'Arial'} # Customize node appearance for node in nt.nodes: node['color'] = {'background': '#e0e7ff', 'border': '#6366f1', 'highlight': {'background': '#c7d2fe', 'border': '#4f46e5'}} node['font'] = {'size': 14, 'color': '#1e293b'} node['shape'] = 'dot' node['size'] = 25 # Generate HTML with iframe to isolate styles html = nt.generate_html() html = html.replace("'", '"') return f"""""" def process_and_visualize(text, model, progress=gr.Progress()): if not text or not model: raise gr.Error("⚠️ Both text and model must be provided.") # Check if we're processing the first example for caching is_first_example = text == EXAMPLES[0][0] # Try to load from cache if it's the first example if is_first_example and os.path.exists(EXAMPLE_CACHE_FILE): try: progress(0.3, desc="Loading from cache...") with open(EXAMPLE_CACHE_FILE, 'rb') as f: cache_data = pickle.load(f) progress(1.0, desc="Loaded from cache!") return cache_data["graph_html"], cache_data["entities_viz"], cache_data["json_data"], cache_data["stats"] except Exception as e: print(f"Cache loading error: {str(e)}") # Continue with normal processing if cache fails progress(0, desc="Starting extraction...") json_data = extract(text, model) progress(0.5, desc="Creating entity visualization...") entities_viz = create_custom_entity_viz(json_data, text) progress(0.8, desc="Building knowledge graph...") graph_html = create_graph(json_data) node_count = len(json_data["nodes"]) edge_count = len(json_data["edges"]) stats = f"πŸ“Š Extracted {node_count} entities and {edge_count} relationships" # Save to cache if it's the first example if is_first_example: try: cache_data = { "graph_html": graph_html, "entities_viz": entities_viz, "json_data": json_data, "stats": stats } with open(EXAMPLE_CACHE_FILE, 'wb') as f: pickle.dump(cache_data, f) except Exception as e: print(f"Cache saving error: {str(e)}") progress(1.0, desc="Complete!") return graph_html, entities_viz, json_data, stats # Example texts in different languages EXAMPLES = [ [handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing lead singer Steven Tyler's unrecoverable vocal cord injury. The decision comes after months of unsuccessful treatment for Tyler's fractured larynx, which he suffered in September 2023.""")], [handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI) in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe, pleaded not guilty to the charges.""")], [handle_text("""세계적인 기술 κΈ°μ—… μ‚Όμ„±μ „μžλŠ” μƒˆλ‘œμš΄ 인곡지λŠ₯ 기반 μŠ€λ§ˆνŠΈν°μ„ μ˜¬ν•΄ ν•˜λ°˜κΈ°μ— μΆœμ‹œν•  μ˜ˆμ •μ΄λΌκ³  λ°œν‘œν–ˆλ‹€. 이 μŠ€λ§ˆνŠΈν°μ€ ν˜„μž¬ 개발 쀑인 κ°€λŸ­μ‹œ μ‹œλ¦¬μ¦ˆμ˜ μ΅œμ‹ μž‘μœΌλ‘œ, κ°•λ ₯ν•œ AI κΈ°λŠ₯κ³Ό ν˜μ‹ μ μΈ 카메라 μ‹œμŠ€ν…œμ„ νƒ‘μž¬ν•  κ²ƒμœΌλ‘œ μ•Œλ €μ‘Œλ‹€. μ‚Όμ„±μ „μžμ˜ CEOλŠ” 이번 μ‹ μ œν’ˆμ΄ 슀마트폰 μ‹œμž₯에 μƒˆλ‘œμš΄ ν˜μ‹ μ„ κ°€μ Έμ˜¬ 것이라고 μ „λ§ν–ˆλ‹€.""")], [handle_text("""ν•œκ΅­ μ˜ν™” '기생좩'은 2020λ…„ 아카데미 μ‹œμƒμ‹μ—μ„œ μž‘ν’ˆμƒ, 감독상, 각본상, κ΅­μ œμ˜ν™”μƒ λ“± 4개 뢀문을 μˆ˜μƒν•˜λ©° 역사λ₯Ό μƒˆλ‘œ 썼닀. λ΄‰μ€€ν˜Έ 감독이 μ—°μΆœν•œ 이 μ˜ν™”λŠ” ν•œκ΅­ μ˜ν™” 졜초둜 μΉΈ μ˜ν™”μ œ ν™©κΈˆμ’…λ €μƒλ„ μˆ˜μƒν–ˆμœΌλ©°, μ „ μ„Έκ³„μ μœΌλ‘œ μ—„μ²­λ‚œ ν₯ν–‰κ³Ό ν‰λ‹¨μ˜ ν˜Έν‰μ„ λ°›μ•˜λ‹€.""")] ] # Function to preprocess the first example when the app starts def generate_first_example_cache(): """Generate cache for the first example if it doesn't exist""" if not os.path.exists(EXAMPLE_CACHE_FILE): print("Generating cache for first example...") try: text = EXAMPLES[0][0] model = MODEL_LIST[0] if MODEL_LIST else None if model: # Extract data json_data = extract(text, model) entities_viz = create_custom_entity_viz(json_data, text) graph_html = create_graph(json_data) node_count = len(json_data["nodes"]) edge_count = len(json_data["edges"]) stats = f"πŸ“Š Extracted {node_count} entities and {edge_count} relationships" # Save to cache cache_data = { "graph_html": graph_html, "entities_viz": entities_viz, "json_data": json_data, "stats": stats } with open(EXAMPLE_CACHE_FILE, 'wb') as f: pickle.dump(cache_data, f) print("First example cache generated successfully") return cache_data except Exception as e: print(f"Error generating first example cache: {str(e)}") else: print("First example cache already exists") try: with open(EXAMPLE_CACHE_FILE, 'rb') as f: return pickle.load(f) except Exception as e: print(f"Error loading existing cache: {str(e)}") return None def create_ui(): # Try to generate/load the first example cache first_example_cache = generate_first_example_cache() with gr.Blocks(css=CUSTOM_CSS, title=TITLE) as demo: # Header gr.Markdown(f"# {TITLE}") gr.Markdown(f"{SUBTITLE}") with gr.Row(): gr.Markdown("🌍 **Multilingual Support Available**") # Main content area - redesigned layout with gr.Row(): # Left panel - Input controls with gr.Column(scale=1): input_model = gr.Dropdown( MODEL_LIST, label="πŸ€– Select Model", info="Choose a model to process your text", value=MODEL_LIST[0] if MODEL_LIST else None ) input_text = gr.TextArea( label="πŸ“ Input Text", info="Enter text in any language to extract a knowledge graph", placeholder="Enter text here...", lines=8, value=EXAMPLES[0][0] # Pre-fill with first example ) with gr.Row(): submit_button = gr.Button("πŸš€ Extract & Visualize", variant="primary", scale=2) clear_button = gr.Button("πŸ”„ Clear", variant="secondary", scale=1) # Statistics will appear here stats_output = gr.Markdown("", label="πŸ” Analysis Results") # Right panel - Examples moved to right side with gr.Column(scale=1): gr.Markdown("## πŸ“š Example Texts") gr.Examples( examples=EXAMPLES, inputs=input_text, label="" ) # JSON output moved to right side as well with gr.Accordion("πŸ“Š JSON Data", open=False): output_json = gr.JSON(label="") # Full width visualization area at the bottom with gr.Row(): with gr.Column(): # Tab container for visualizations with gr.Tabs(): with gr.TabItem("🧩 Knowledge Graph"): output_graph = gr.HTML(label="") with gr.TabItem("🏷️ Entity Recognition"): output_entity_viz = gr.HTML(label="") # Functionality submit_button.click( fn=process_and_visualize, inputs=[input_text, input_model], outputs=[output_graph, output_entity_viz, output_json, stats_output] ) clear_button.click( fn=lambda: [None, None, None, ""], inputs=[], outputs=[output_graph, output_entity_viz, output_json, stats_output] ) # Set initial values from cache if available if first_example_cache: # Use this to set initial values when the app loads demo.load( lambda: [ first_example_cache["graph_html"], first_example_cache["entities_viz"], first_example_cache["json_data"], first_example_cache["stats"] ], inputs=None, outputs=[output_graph, output_entity_viz, output_json, stats_output] ) # Footer gr.Markdown("---") gr.Markdown("πŸ“‹ **Instructions:** Enter text in any language, select a model, and click 'Extract & Visualize' to generate a knowledge graph.") gr.Markdown("πŸ› οΈ Powered by Phi-3 Instruct Graph | Emergent Methods") return demo demo = create_ui() demo.launch(share=False)