Spaces:
Sleeping
Sleeping
File size: 14,287 Bytes
b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb f5a9f9e b6cf9eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import spaces
import gradio as gr
from phi3_instruct_graph import MODEL_LIST, Phi3InstructGraph
import rapidjson
from pyvis.network import Network
import networkx as nx
import spacy
from spacy import displacy
from spacy.tokens import Span
import random
import time
# Set up the theme and styling
CUSTOM_CSS = """
.gradio-container {
font-family: 'Inter', 'Segoe UI', Roboto, sans-serif;
}
.gr-prose h1 {
font-size: 2.5rem !important;
margin-bottom: 0.5rem !important;
background: linear-gradient(90deg, #4338ca, #a855f7);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.gr-prose h2 {
font-size: 1.8rem !important;
margin-top: 1rem !important;
}
.info-box {
padding: 1rem;
border-radius: 0.5rem;
background-color: #f3f4f6;
margin-bottom: 1rem;
border-left: 4px solid #6366f1;
}
.language-badge {
display: inline-block;
padding: 0.25rem 0.5rem;
border-radius: 9999px;
font-size: 0.75rem;
font-weight: 600;
background-color: #e0e7ff;
color: #4338ca;
margin-right: 0.5rem;
margin-bottom: 0.5rem;
}
.footer {
text-align: center;
margin-top: 2rem;
padding-top: 1rem;
border-top: 1px solid #e2e8f0;
font-size: 0.875rem;
color: #64748b;
}
"""
# Color utilities
def get_random_light_color():
r = random.randint(150, 255)
g = random.randint(150, 255)
b = random.randint(150, 255)
return f"#{r:02x}{g:02x}{b:02x}"
# Text processing helper
def handle_text(text):
return " ".join(text.split())
# Core extraction function
@spaces.GPU
def extract(text, model):
model = Phi3InstructGraph(model=model)
try:
result = model.extract(text)
return rapidjson.loads(result)
except Exception as e:
raise gr.Error(f"π¨ Extraction failed: {str(e)}")
def find_token_indices(doc, substring, text):
result = []
start_index = text.find(substring)
while start_index != -1:
end_index = start_index + len(substring)
start_token = None
end_token = None
for token in doc:
if token.idx == start_index:
start_token = token.i
if token.idx + len(token) == end_index:
end_token = token.i + 1
if start_token is not None and end_token is not None:
result.append({
"start": start_token,
"end": end_token
})
# Search for next occurrence
start_index = text.find(substring, end_index)
return result
def create_custom_entity_viz(data, full_text):
nlp = spacy.blank("xx")
doc = nlp(full_text)
spans = []
colors = {}
for node in data["nodes"]:
entity_spans = find_token_indices(doc, node["id"], full_text)
for dataentity in entity_spans:
start = dataentity["start"]
end = dataentity["end"]
if start < len(doc) and end <= len(doc):
# Check for overlapping spans
overlapping = any(s.start < end and start < s.end for s in spans)
if not overlapping:
span = Span(doc, start, end, label=node["type"])
spans.append(span)
if node["type"] not in colors:
colors[node["type"]] = get_random_light_color()
doc.set_ents(spans, default="unmodified")
doc.spans["sc"] = spans
options = {
"colors": colors,
"ents": list(colors.keys()),
"style": "ent",
"manual": True
}
html = displacy.render(doc, style="span", options=options)
# Add custom styling to the entity visualization
styled_html = f"""
<div style="border-radius: 0.5rem; padding: 1rem; background-color: white;
border: 1px solid #e2e8f0; box-shadow: 0 1px 3px 0 rgba(0, 0, 0, 0.1);">
<div style="margin-bottom: 0.75rem; font-weight: 500; color: #4b5563;">
Entity types found:
{' '.join([f'<span style="display: inline-block; margin-right: 0.5rem; margin-bottom: 0.5rem; padding: 0.25rem 0.5rem; border-radius: 9999px; font-size: 0.75rem; background-color: {colors[entity_type]}; color: #1e293b;">{entity_type}</span>' for entity_type in colors.keys()])}
</div>
{html}
</div>
"""
return styled_html
def create_graph(json_data):
G = nx.DiGraph() # Using DiGraph for directed graph
# Add nodes
for node in json_data['nodes']:
G.add_node(node['id'],
title=f"{node['type']}: {node['detailed_type']}",
group=node['type']) # Group nodes by type
# Add edges
for edge in json_data['edges']:
G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label'])
# Create network visualization
nt = Network(
width="100%",
height="600px",
directed=True,
notebook=False,
bgcolor="#fafafa",
font_color="#1e293b"
)
# Configure network
nt.from_nx(G)
nt.barnes_hut(
gravity=-3000,
central_gravity=0.3,
spring_length=150,
spring_strength=0.001,
damping=0.09,
overlap=0,
)
# Create color groups for node types
node_types = {node['type'] for node in json_data['nodes']}
colors = {}
for i, node_type in enumerate(node_types):
hue = (i * 137) % 360 # Golden ratio to distribute colors
colors[node_type] = f"hsl({hue}, 70%, 70%)"
# Customize nodes
for node in nt.nodes:
node_data = next((n for n in json_data['nodes'] if n['id'] == node['id']), None)
if node_data:
node_type = node_data['type']
node['color'] = colors.get(node_type, "#bfdbfe")
node['shape'] = 'dot'
node['size'] = 20
node['borderWidth'] = 2
node['borderWidthSelected'] = 4
node['font'] = {'size': 14, 'color': '#1e293b', 'face': 'Inter, Arial'}
# Customize edges
for edge in nt.edges:
edge['color'] = {'color': '#94a3b8', 'highlight': '#6366f1', 'hover': '#818cf8'}
edge['width'] = 1.5
edge['selectionWidth'] = 2
edge['hoverWidth'] = 2
edge['arrows'] = {'to': {'enabled': True, 'type': 'arrow'}}
edge['smooth'] = {'type': 'continuous', 'roundness': 0.2}
edge['font'] = {'size': 12, 'color': '#4b5563', 'face': 'Inter, Arial', 'strokeWidth': 2, 'strokeColor': '#ffffff'}
# Generate HTML
html = nt.generate_html()
html = html.replace("'", '"')
html = html.replace('height: 600px;', 'height: 600px; border-radius: 8px;')
return f"""<iframe style="width: 100%; height: 620px; margin: 0 auto; border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);"
name="result" allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;"
sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
def process_and_visualize(text, model, progress=gr.Progress()):
if not text or not model:
raise gr.Error("β οΈ Please provide both text and model")
# Progress updates
progress(0.1, "Initializing...")
time.sleep(0.2) # Small delay for UI feedback
# Extract graph
progress(0.2, "Extracting knowledge graph...")
json_data = extract(text, model)
# Entity visualization
progress(0.6, "Identifying entities...")
entities_viz = create_custom_entity_viz(json_data, text)
# Graph visualization
progress(0.8, "Building graph visualization...")
graph_html = create_graph(json_data)
# Statistics
entity_types = {}
for node in json_data['nodes']:
entity_type = node['type']
if entity_type in entity_types:
entity_types[entity_type] += 1
else:
entity_types[entity_type] = 1
stats_html = f"""
<div class="info-box">
<h3 style="margin-top: 0;">π Extraction Results</h3>
<p>β
Successfully extracted <b>{len(json_data['nodes'])}</b> entities and <b>{len(json_data['edges'])}</b> relationships.</p>
<div>
<h4>Entity Types:</h4>
<div>
{''.join([f'<span class="language-badge">{entity_type}: {count}</span>' for entity_type, count in entity_types.items()])}
</div>
</div>
</div>
"""
progress(1.0, "Done!")
return graph_html, entities_viz, json_data, stats_html
def language_info():
return """
<div class="info-box">
<h3 style="margin-top: 0;">π Multilingual Support</h3>
<p>This application supports text analysis in multiple languages, including:</p>
<div>
<span class="language-badge">English π¬π§</span>
<span class="language-badge">Korean π°π·</span>
<span class="language-badge">Spanish πͺπΈ</span>
<span class="language-badge">French π«π·</span>
<span class="language-badge">German π©πͺ</span>
<span class="language-badge">Japanese π―π΅</span>
<span class="language-badge">Chinese π¨π³</span>
<span class="language-badge">And more...</span>
</div>
</div>
"""
def tips_html():
return """
<div class="info-box">
<h3 style="margin-top: 0;">π‘ Tips for Best Results</h3>
<ul>
<li>Use clear, descriptive sentences with well-defined relationships</li>
<li>Include specific entities, events, dates, and locations for better extraction</li>
<li>Longer texts provide more context for relationship identification</li>
<li>Try different models to compare extraction results</li>
</ul>
</div>
"""
# Examples in multiple languages
EXAMPLES = [
[handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing
lead singer Steven Tyler's unrecoverable vocal cord injury.
The decision comes after months of unsuccessful treatment for Tyler's fractured larynx,
which he suffered in September 2023.""")],
[handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual
court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI)
in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe,
pleaded not guilty to the charges.""")],
[handle_text("""μΈκ³μ μΈ κΈ°μ κΈ°μ
μΌμ±μ μλ μλ‘μ΄ μΈκ³΅μ§λ₯ κΈ°λ° μ€λ§νΈν°μ μ¬ν΄ νλ°κΈ°μ μΆμν μμ μ΄λΌκ³ λ°ννλ€.
μ΄ μ€λ§νΈν°μ νμ¬ κ°λ° μ€μΈ κ°€λμ μ리μ¦μ μ΅μ μμΌλ‘, κ°λ ₯ν AI κΈ°λ₯κ³Ό νμ μ μΈ μΉ΄λ©λΌ μμ€ν
μ νμ¬ν κ²μΌλ‘ μλ €μ‘λ€.
μΌμ±μ μμ CEOλ μ΄λ² μ μ νμ΄ μ€λ§νΈν° μμ₯μ μλ‘μ΄ νμ μ κ°μ Έμ¬ κ²μ΄λΌκ³ μ λ§νλ€.""")],
[handle_text("""νκ΅ μν 'κΈ°μμΆ©'μ 2020λ
μμΉ΄λ°λ―Έ μμμμμ μνμ, κ°λ
μ, κ°λ³Έμ, κ΅μ μνμ λ± 4κ° λΆλ¬Έμ μμνλ©° μμ¬λ₯Ό μλ‘ μΌλ€.
λ΄μ€νΈ κ°λ
μ΄ μ°μΆν μ΄ μνλ νκ΅ μν μ΅μ΄λ‘ μΉΈ μνμ ν©κΈμ’
λ €μλ μμνμΌλ©°, μ μΈκ³μ μΌλ‘ μμ²λ ν₯νκ³Ό
νλ¨μ νΈνμ λ°μλ€.""")]
]
# Main UI
with gr.Blocks(css=CUSTOM_CSS, title="π§ Phi-3 Knowledge Graph Explorer") as demo:
# Header
gr.Markdown("# π§ Phi-3 Knowledge Graph Explorer")
gr.Markdown("### β¨ Extract and visualize knowledge graphs from text in any language")
with gr.Row():
with gr.Column(scale=2):
input_text = gr.TextArea(
label="π Enter your text",
placeholder="Paste or type your text here...",
lines=10
)
with gr.Row():
input_model = gr.Dropdown(
MODEL_LIST,
label="π€ Model",
value=MODEL_LIST[0] if MODEL_LIST else None,
info="Select the model to use for extraction"
)
with gr.Column():
submit_button = gr.Button("π Extract & Visualize", variant="primary")
clear_button = gr.Button("π Clear", variant="secondary")
# Multilingual support info
gr.HTML(language_info())
# Examples section
gr.Examples(
examples=EXAMPLES,
inputs=input_text,
label="π Example Texts (English & Korean)"
)
# Tips
gr.HTML(tips_html())
with gr.Column(scale=3):
# Stats output
stats_output = gr.HTML(label="")
# Tabs for different visualizations
with gr.Tabs():
with gr.TabItem("π Knowledge Graph"):
output_graph = gr.HTML()
with gr.TabItem("π·οΈ Entity Recognition"):
output_entity_viz = gr.HTML()
with gr.TabItem("π JSON Data"):
output_json = gr.JSON()
# Footer
gr.HTML("""
<div class="footer">
<p>π Powered by Phi-3 Instruct Graph | Created by Emergent Methods</p>
<p>Β© 2025 | Knowledge Graph Explorer</p>
</div>
""")
# Set up event handlers
submit_button.click(
fn=process_and_visualize,
inputs=[input_text, input_model],
outputs=[output_graph, output_entity_viz, output_json, stats_output]
)
clear_button.click(
fn=lambda: [None, None, None, ""],
inputs=[],
outputs=[output_graph, output_entity_viz, output_json, stats_output]
)
# Launch the app
demo.launch(share=False) |