Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,959 Bytes
94bf1e0 d289335 94bf1e0 46324f5 fcc0582 55d59a6 fcc0582 f749fc6 b852bf5 f749fc6 b852bf5 91a6397 f749fc6 fcc0582 46324f5 fcc0582 d289335 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 8867999 5e34bda 8867999 5e34bda 94bf1e0 46324f5 94bf1e0 5e34bda 94bf1e0 5e34bda 94bf1e0 fcc0582 94bf1e0 5e34bda 94bf1e0 fcc0582 94bf1e0 46324f5 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 46324f5 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 46324f5 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 46324f5 fcc0582 5974897 fcc0582 35e452a 5974897 fcc0582 46324f5 fcc0582 46324f5 f749fc6 b852bf5 91a6397 b852bf5 fcc0582 46324f5 fcc0582 46324f5 91a6397 b852bf5 46324f5 91a6397 b852bf5 46324f5 91a6397 5e34bda 46324f5 fcc0582 46324f5 fcc0582 b852bf5 fcc0582 94bf1e0 fcc0582 94bf1e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import spaces
import gradio as gr
from phi3_instruct_graph import MODEL_LIST, Phi3InstructGraph
import rapidjson
from pyvis.network import Network
import networkx as nx
import spacy
from spacy import displacy
from spacy.tokens import Span
import random
import os
import pickle
# Constants
TITLE = "π GraphMind: Phi-3 Instruct Graph Explorer"
SUBTITLE = "β¨ Extract and visualize knowledge graphs from any text in multiple languages"
# Basic CSS for styling
CUSTOM_CSS = """
.gradio-container {
font-family: 'Segoe UI', Roboto, sans-serif;
}
"""
# Cache directory and file paths
CACHE_DIR = "cache"
EXAMPLE_CACHE_FILE = os.path.join(CACHE_DIR, "first_example_cache.pkl")
# Create cache directory if it doesn't exist
os.makedirs(CACHE_DIR, exist_ok=True)
# Color utilities
def get_random_light_color():
r = random.randint(140, 255)
g = random.randint(140, 255)
b = random.randint(140, 255)
return f"#{r:02x}{g:02x}{b:02x}"
# Text preprocessing
def handle_text(text):
return " ".join(text.split())
# Main processing functions
@spaces.GPU
def extract(text, model):
try:
model = Phi3InstructGraph(model=model)
result = model.extract(text)
return rapidjson.loads(result)
except Exception as e:
raise gr.Error(f"Extraction error: {str(e)}")
def find_token_indices(doc, substring, text):
result = []
start_index = text.find(substring)
while start_index != -1:
end_index = start_index + len(substring)
start_token = None
end_token = None
for token in doc:
if token.idx == start_index:
start_token = token.i
if token.idx + len(token) == end_index:
end_token = token.i + 1
if start_token is not None and end_token is not None:
result.append({
"start": start_token,
"end": end_token
})
# Search for next occurrence
start_index = text.find(substring, end_index)
return result
def create_custom_entity_viz(data, full_text):
nlp = spacy.blank("xx")
doc = nlp(full_text)
spans = []
colors = {}
for node in data["nodes"]:
entity_spans = find_token_indices(doc, node["id"], full_text)
for dataentity in entity_spans:
start = dataentity["start"]
end = dataentity["end"]
if start < len(doc) and end <= len(doc):
# Check for overlapping spans
overlapping = any(s.start < end and start < s.end for s in spans)
if not overlapping:
node_type = node.get("type", "Entity")
span = Span(doc, start, end, label=node_type)
spans.append(span)
if node_type not in colors:
colors[node_type] = get_random_light_color()
doc.set_ents(spans, default="unmodified")
doc.spans["sc"] = spans
options = {
"colors": colors,
"ents": list(colors.keys()),
"style": "ent",
"manual": True
}
html = displacy.render(doc, style="span", options=options)
# Add custom styling to the entity visualization
styled_html = f"""
<div style="padding: 20px; border-radius: 12px; background-color: white; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);">
{html}
</div>
"""
return styled_html
def create_graph(json_data):
G = nx.Graph()
# Add nodes with tooltips - with error handling for missing keys
for node in json_data['nodes']:
# Get node type with fallback
node_type = node.get("type", "Entity")
# Get detailed type with fallback
detailed_type = node.get("detailed_type", node_type)
# Use node ID and type info for the tooltip
G.add_node(node['id'], title=f"{node_type}: {detailed_type}")
# Add edges with labels
for edge in json_data['edges']:
# Check if the required keys exist
if 'from' in edge and 'to' in edge:
label = edge.get('label', 'related')
G.add_edge(edge['from'], edge['to'], title=label, label=label)
# Create network visualization
nt = Network(
width="100%",
height="700px",
directed=True,
notebook=False,
bgcolor="#f8fafc",
font_color="#1e293b"
)
# Configure network display
nt.from_nx(G)
nt.barnes_hut(
gravity=-3000,
central_gravity=0.3,
spring_length=50,
spring_strength=0.001,
damping=0.09,
overlap=0,
)
# Customize edge appearance
for edge in nt.edges:
edge['width'] = 2
edge['arrows'] = {'to': {'enabled': True, 'type': 'arrow'}}
edge['color'] = {'color': '#6366f1', 'highlight': '#4f46e5'}
edge['font'] = {'size': 12, 'color': '#4b5563', 'face': 'Arial'}
# Customize node appearance
for node in nt.nodes:
node['color'] = {'background': '#e0e7ff', 'border': '#6366f1', 'highlight': {'background': '#c7d2fe', 'border': '#4f46e5'}}
node['font'] = {'size': 14, 'color': '#1e293b'}
node['shape'] = 'dot'
node['size'] = 25
# Generate HTML with iframe to isolate styles
html = nt.generate_html()
html = html.replace("'", '"')
return f"""<iframe style="width: 100%; height: 700px; margin: 0 auto; border-radius: 12px; box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -4px rgba(0, 0, 0, 0.1);"
name="result" allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;"
sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
def process_and_visualize(text, model, progress=gr.Progress()):
if not text or not model:
raise gr.Error("β οΈ Both text and model must be provided.")
# Check if we're processing the first example for caching
is_first_example = text == EXAMPLES[0][0]
# Try to load from cache if it's the first example
if is_first_example and os.path.exists(EXAMPLE_CACHE_FILE):
try:
progress(0.3, desc="Loading from cache...")
with open(EXAMPLE_CACHE_FILE, 'rb') as f:
cache_data = pickle.load(f)
progress(1.0, desc="Loaded from cache!")
return cache_data["graph_html"], cache_data["entities_viz"], cache_data["json_data"], cache_data["stats"]
except Exception as e:
print(f"Cache loading error: {str(e)}")
# Continue with normal processing if cache fails
progress(0, desc="Starting extraction...")
json_data = extract(text, model)
progress(0.5, desc="Creating entity visualization...")
entities_viz = create_custom_entity_viz(json_data, text)
progress(0.8, desc="Building knowledge graph...")
graph_html = create_graph(json_data)
node_count = len(json_data["nodes"])
edge_count = len(json_data["edges"])
stats = f"π Extracted {node_count} entities and {edge_count} relationships"
# Save to cache if it's the first example
if is_first_example:
try:
cache_data = {
"graph_html": graph_html,
"entities_viz": entities_viz,
"json_data": json_data,
"stats": stats
}
with open(EXAMPLE_CACHE_FILE, 'wb') as f:
pickle.dump(cache_data, f)
except Exception as e:
print(f"Cache saving error: {str(e)}")
progress(1.0, desc="Complete!")
return graph_html, entities_viz, json_data, stats
# Example texts in different languages
EXAMPLES = [
[handle_text("""My son Tom, as my direct descendant and John's father, has built a long-standing, companion-like relationship with Brown, significantly influencing each other's growth within the family.
Mary, my maternal grandmother, has imparted unwavering wisdom and love not only to Brown and me but also to Tom and John, and she has maintained a deep familial bond with Jane's mother.
Brown, transcending a mere brotherly relationship, has forged a strong father-child bond with Daniel as his biological father, and with Jane, they have significantly impacted each other's lives through numerous family gatherings, forming a solid connection.
Jane, my cousin, contributes to the family's unity through her informal rapport with Tom, and with Lisa, she shares a special bond that goes beyond ordinary cousin relationships, mutually supporting each other.""")],
[handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual
court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI)
in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe,
pleaded not guilty to the charges.""")],
[handle_text("""λ΄ μλ€ λ―Όμλ λ΄ μ§κ³ νμμ΄μ μ€νΈμ λΆμΉμΌλ‘, ννκ³Όλ μ€λ μ°μ λ₯Ό μμμ¨ λλ£ κ°μ κ΄κ³λ₯Ό μ μ§νλ©°, κ°λ¬Έ λ΄μμ μλ‘μ μ±μ₯μ ν° μν₯μ μ£Όκ³ μλ€.
μμλ λμ μΈμ‘°λͺ¨λ‘μ, λμ ννμ λ¬Όλ‘ λ―Όμμ μ€νΈμκ² νκ²°κ°μ μ§νμ μ¬λμ μ ν΄μ£ΌμμΌλ©°, μ§μμ μ΄λ¨Έλμλ κΉμ κ°μ‘±μ μ λλ₯Ό 곡μ ν΄μλ€.
ννμ λ¨μν νμ κ΄κ³λ₯Ό λμ΄, νμ°μ μΉλΆλ‘μ κ·Έμ ꡳ건ν λΆμ κ΄κ³λ₯Ό μ΄λ£¨λ©°, μ§μκ³Όλ μλ§μ κ°μ‘± λͺ¨μμμ μλ‘μ μΆμ ν° μν₯μ μ£Όλ©° λ¨λ¨ν μΈμ°μ λ§λ€μ΄μλ€.
μ§μμ λμ μ¬μ΄μΌλ‘μ, λ―Όμμλ λΉκ³΅μμ μΉλΆμ ν΅ν΄ κ°λ¬Έμ νν©μ κΈ°μ¬νλ©°, μμ§κ³Όλ μ΄μ’
μ¬μ΄ μ΄μμ νΉλ³ν μ°μ λ‘ μλ‘λ₯Ό μ§ν±νλ μ¬μ΄μ΄λ€.
""")],
[handle_text("""νκ΅ μν 'κΈ°μμΆ©'μ 2020λ
μμΉ΄λ°λ―Έ μμμμμ μνμ, κ°λ
μ, κ°λ³Έμ, κ΅μ μνμ λ± 4κ° λΆλ¬Έμ μμνλ©° μμ¬λ₯Ό μλ‘ μΌλ€.
λ΄μ€νΈ κ°λ
μ΄ μ°μΆν μ΄ μνλ νκ΅ μν μ΅μ΄λ‘ μΉΈ μνμ ν©κΈμ’
λ €μλ μμνμΌλ©°, μ μΈκ³μ μΌλ‘ μμ²λ ν₯νκ³Ό
νλ¨μ νΈνμ λ°μλ€.""")]
]
# Function to preprocess the first example when the app starts
def generate_first_example_cache():
"""Generate cache for the first example if it doesn't exist"""
if not os.path.exists(EXAMPLE_CACHE_FILE):
print("Generating cache for first example...")
try:
text = EXAMPLES[0][0]
model = MODEL_LIST[0] if MODEL_LIST else None
if model:
# Extract data
json_data = extract(text, model)
entities_viz = create_custom_entity_viz(json_data, text)
graph_html = create_graph(json_data)
node_count = len(json_data["nodes"])
edge_count = len(json_data["edges"])
stats = f"π Extracted {node_count} entities and {edge_count} relationships"
# Save to cache
cache_data = {
"graph_html": graph_html,
"entities_viz": entities_viz,
"json_data": json_data,
"stats": stats
}
with open(EXAMPLE_CACHE_FILE, 'wb') as f:
pickle.dump(cache_data, f)
print("First example cache generated successfully")
return cache_data
except Exception as e:
print(f"Error generating first example cache: {str(e)}")
else:
print("First example cache already exists")
try:
with open(EXAMPLE_CACHE_FILE, 'rb') as f:
return pickle.load(f)
except Exception as e:
print(f"Error loading existing cache: {str(e)}")
return None
def create_ui():
# Try to generate/load the first example cache
first_example_cache = generate_first_example_cache()
with gr.Blocks(css=CUSTOM_CSS, title=TITLE) as demo:
# Header
gr.Markdown(f"# {TITLE}")
gr.Markdown(f"{SUBTITLE}")
with gr.Row():
gr.Markdown("π **Multilingual Support Available**")
# Main content area - redesigned layout
with gr.Row():
# Left panel - Input controls
with gr.Column(scale=1):
input_model = gr.Dropdown(
MODEL_LIST,
label="π€ Select Model",
info="Choose a model to process your text",
value=MODEL_LIST[0] if MODEL_LIST else None
)
input_text = gr.TextArea(
label="π Input Text",
info="Enter text in any language to extract a knowledge graph",
placeholder="Enter text here...",
lines=8,
value=EXAMPLES[0][0] # Pre-fill with first example
)
with gr.Row():
submit_button = gr.Button("π Extract & Visualize", variant="primary", scale=2)
clear_button = gr.Button("π Clear", variant="secondary", scale=1)
# Statistics will appear here
stats_output = gr.Markdown("", label="π Analysis Results")
# Right panel - Examples moved to right side
with gr.Column(scale=1):
gr.Markdown("## π Example Texts")
gr.Examples(
examples=EXAMPLES,
inputs=input_text,
label=""
)
# JSON output moved to right side as well
with gr.Accordion("π JSON Data", open=False):
output_json = gr.JSON(label="")
# Full width visualization area at the bottom
with gr.Row():
# Full width visualization area
with gr.Tabs():
with gr.TabItem("𧩠Knowledge Graph"):
output_graph = gr.HTML(label="")
with gr.TabItem("π·οΈ Entity Recognition"):
output_entity_viz = gr.HTML(label="")
# Functionality
submit_button.click(
fn=process_and_visualize,
inputs=[input_text, input_model],
outputs=[output_graph, output_entity_viz, output_json, stats_output]
)
clear_button.click(
fn=lambda: [None, None, None, ""],
inputs=[],
outputs=[output_graph, output_entity_viz, output_json, stats_output]
)
# Set initial values from cache if available
if first_example_cache:
# Use this to set initial values when the app loads
demo.load(
lambda: [
first_example_cache["graph_html"],
first_example_cache["entities_viz"],
first_example_cache["json_data"],
first_example_cache["stats"]
],
inputs=None,
outputs=[output_graph, output_entity_viz, output_json, stats_output]
)
# Footer
gr.Markdown("---")
gr.Markdown("π **Instructions:** Enter text in any language, select a model, and click 'Extract & Visualize' to generate a knowledge graph.")
gr.Markdown("π οΈ Powered by Phi-3 Instruct Graph | Emergent Methods")
return demo
demo = create_ui()
demo.launch(share=False) |