Suweeraya commited on
Commit
88378c3
·
1 Parent(s): 13f404f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -14
app.py CHANGED
@@ -1,21 +1,42 @@
1
  import gradio as gr
2
  from PIL import Image
 
 
 
 
 
3
 
4
  size = 128
5
 
6
  def build_model(input_shape):
7
- model = build_model(input_shape=(size, size, 1))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  return model
9
 
10
  model = build_model(input_shape=(size, size, 1))
11
  model.load_weights('BreastCancerSegmentation.h5')
12
 
13
- def preprocess_image(image, size: int=128):
14
- image = cv2.resize(image, (size,size))
15
- image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
16
- image = image/255.
17
  return image
18
-
19
  def segment(image):
20
  image = preprocess_image(image, size=size)
21
  image = np.expand_dims(image, 0)
@@ -28,11 +49,11 @@ def segment(image):
28
  return mask_image
29
 
30
  if __name__ == "__main__":
31
- gr.Interface(
32
- fn=segment,
33
- inputs="image",
34
- outputs=gr.Image(type="pil", label="Breast Cancer Mask"),
35
- examples = [["/content/benign(10).png"], ["/content/benign(109).png"]],
36
- title = "Breast Cancer Ultrasound Image Segmentation",
37
- description = "Check out this exciting development in the field of breast cancer diagnosis and treatment! A demo of Breast Cancer Ultrasound Image Segmentation has been developed. Upload image file, or try out one of the examples below!"
38
- ).launch(share=True, debug=True)
 
1
  import gradio as gr
2
  from PIL import Image
3
+ import cv2
4
+ import numpy as np
5
+ from tensorflow.keras.models import load_model
6
+ from tensorflow.keras.layers import Input, Conv2D
7
+ from tensorflow.keras.models import Model
8
 
9
  size = 128
10
 
11
  def build_model(input_shape):
12
+ input_layer = Input(input_shape)
13
+
14
+ s1, p1 = encoder_block(input_layer, 64)
15
+ s2, p2 = encoder_block(p1, 128)
16
+ s3, p3 = encoder_block(p2, 256)
17
+ s4, p4 = encoder_block(p3, 512)
18
+
19
+ b1 = conv_block(p4, 1024)
20
+
21
+ d1 = decoder_block(b1, s4, 512)
22
+ d2 = decoder_block(d1, s3, 256)
23
+ d3 = decoder_block(d2, s2, 128)
24
+ d4 = decoder_block(d3, s1, 64)
25
+
26
+ output_layer = Conv2D(1, 1, padding="same", activation="sigmoid")(d4)
27
+
28
+ model = Model(input_layer, output_layer, name="U-Net")
29
  return model
30
 
31
  model = build_model(input_shape=(size, size, 1))
32
  model.load_weights('BreastCancerSegmentation.h5')
33
 
34
+ def preprocess_image(image, size=128):
35
+ image = cv2.resize(image, (size, size))
36
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
37
+ image = image / 255.
38
  return image
39
+
40
  def segment(image):
41
  image = preprocess_image(image, size=size)
42
  image = np.expand_dims(image, 0)
 
49
  return mask_image
50
 
51
  if __name__ == "__main__":
52
+ gr.Interface(
53
+ fn=segment,
54
+ inputs="image",
55
+ outputs=gr.Image(type="pil", label="Breast Cancer Mask"),
56
+ examples=[["/content/benign(10).png"], ["/content/benign(109).png"]],
57
+ title="Breast Cancer Ultrasound Image Segmentation",
58
+ description="Check out this exciting development in the field of breast cancer diagnosis and treatment! A demo of Breast Cancer Ultrasound Image Segmentation has been developed. Upload an image file, or try out one of the examples below!"
59
+ ).launch(share=True, debug=True)