Suweeraya commited on
Commit
7bdee49
·
1 Parent(s): 039c4f2

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -33
app.py DELETED
@@ -1,33 +0,0 @@
1
- import gradio as gr
2
- from PIL import Image
3
-
4
- size=128
5
- model = build_model(input_shape=(size, size, 1))
6
- model.load_weights('BreastCancerSegmentation.h5')
7
-
8
- def preprocess_image(image, size: int=128):
9
- image = cv2.resize(image, (size,size))
10
- image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
11
- image = image/255.
12
- return image
13
-
14
- def segment(image):
15
- image = preprocess_image(image, size=size)
16
- image = np.expand_dims(image, 0)
17
- output = model.predict(image, verbose=0)
18
- mask_image = output[0]
19
- mask_image = np.squeeze(mask_image, -1)
20
- mask_image *= 255
21
- mask_image = mask_image.astype(np.uint8)
22
- mask_image = Image.fromarray(mask_image).convert("L")
23
- return mask_image
24
-
25
- if __name__ == "__main__":
26
- gr.Interface(
27
- fn=segment,
28
- inputs="image",
29
- outputs=gr.Image(type="pil", label="Breast Cancer Mask"),
30
- examples = [["/content/benign(10).png"], ["/content/benign(109).png"]],
31
- title = "Breast Cancer Ultrasound Image Segmentation",
32
- description = "Check out this exciting development in the field of breast cancer diagnosis and treatment! A demo of Breast Cancer Ultrasound Image Segmentation has been developed. Upload image file, or try out one of the examples below!"
33
- ).launch(share=True, debug=True)