Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
size=128
|
5 |
+
model = build_model(input_shape=(size, size, 1))
|
6 |
+
model.load_weights('BreastCancerSegmentation.h5')
|
7 |
+
|
8 |
+
def preprocess_image(image, size: int=128):
|
9 |
+
image = cv2.resize(image, (size,size))
|
10 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
11 |
+
image = image/255.
|
12 |
+
return image
|
13 |
+
|
14 |
+
def segment(image):
|
15 |
+
image = preprocess_image(image, size=size)
|
16 |
+
image = np.expand_dims(image, 0)
|
17 |
+
output = model.predict(image, verbose=0)
|
18 |
+
mask_image = output[0]
|
19 |
+
mask_image = np.squeeze(mask_image, -1)
|
20 |
+
mask_image *= 255
|
21 |
+
mask_image = mask_image.astype(np.uint8)
|
22 |
+
mask_image = Image.fromarray(mask_image).convert("L")
|
23 |
+
return mask_image
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
gr.Interface(
|
27 |
+
fn=segment,
|
28 |
+
inputs="image",
|
29 |
+
outputs=gr.Image(type="pil", label="Breast Cancer Mask"),
|
30 |
+
examples = [["/content/benign(10).png"], ["/content/benign(109).png"]],
|
31 |
+
title = "Breast Cancer Ultrasound Image Segmentation",
|
32 |
+
description = "Check out this exciting development in the field of breast cancer diagnosis and treatment! A demo of Breast Cancer Ultrasound Image Segmentation has been developed. Upload image file, or try out one of the examples below!"
|
33 |
+
).launch(share=True, debug=True)
|