Suweeraya commited on
Commit
3aa0ad6
·
1 Parent(s): f4385db

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+
4
+ size=128
5
+ model = build_model(input_shape=(size, size, 1))
6
+ model.load_weights('BreastCancerSegmentation.h5')
7
+
8
+ def preprocess_image(image, size: int=128):
9
+ image = cv2.resize(image, (size,size))
10
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
11
+ image = image/255.
12
+ return image
13
+
14
+ def segment(image):
15
+ image = preprocess_image(image, size=size)
16
+ image = np.expand_dims(image, 0)
17
+ output = model.predict(image, verbose=0)
18
+ mask_image = output[0]
19
+ mask_image = np.squeeze(mask_image, -1)
20
+ mask_image *= 255
21
+ mask_image = mask_image.astype(np.uint8)
22
+ mask_image = Image.fromarray(mask_image).convert("L")
23
+ return mask_image
24
+
25
+ if __name__ == "__main__":
26
+ gr.Interface(
27
+ fn=segment,
28
+ inputs="image",
29
+ outputs=gr.Image(type="pil", label="Breast Cancer Mask"),
30
+ examples = [["/content/benign(10).png"], ["/content/benign(109).png"]],
31
+ title = "Breast Cancer Ultrasound Image Segmentation",
32
+ description = "Check out this exciting development in the field of breast cancer diagnosis and treatment! A demo of Breast Cancer Ultrasound Image Segmentation has been developed. Upload image file, or try out one of the examples below!"
33
+ ).launch(share=True, debug=True)