Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
model = build_model(input_shape=(size, size, 1))
|
|
|
6 |
model.load_weights('BreastCancerSegmentation.h5')
|
|
|
7 |
|
8 |
def preprocess_image(image, size=128):
|
9 |
image = cv2.resize(image, (size, size))
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
|
4 |
+
def conv_block(input, num_filters):
|
5 |
+
conv = Conv2D(num_filters, (3, 3), activation="relu", padding="same", kernel_initializer='he_normal')(input)
|
6 |
+
conv = Conv2D(num_filters, (3, 3), activation="relu", padding="same", kernel_initializer='he_normal')(conv)
|
7 |
+
return conv
|
8 |
+
|
9 |
+
def encoder_block(input, num_filters):
|
10 |
+
conv = conv_block(input, num_filters)
|
11 |
+
pool = MaxPooling2D((2, 2))(conv)
|
12 |
+
return conv, pool
|
13 |
+
|
14 |
+
def decoder_block(input, skip_features, num_filters):
|
15 |
+
uconv = Conv2DTranspose(num_filters, (2, 2), strides=2, padding="same")(input)
|
16 |
+
con = concatenate([uconv, skip_features])
|
17 |
+
conv = conv_block(con, num_filters)
|
18 |
+
return conv
|
19 |
+
|
20 |
+
def build_model(input_shape):
|
21 |
+
input_layer = Input(input_shape)
|
22 |
+
|
23 |
+
s1, p1 = encoder_block(input_layer, 64)
|
24 |
+
s2, p2 = encoder_block(p1, 128)
|
25 |
+
s3, p3 = encoder_block(p2, 256)
|
26 |
+
s4, p4 = encoder_block(p3, 512)
|
27 |
+
|
28 |
+
b1 = conv_block(p4, 1024)
|
29 |
+
|
30 |
+
d1 = decoder_block(b1, s4, 512)
|
31 |
+
d2 = decoder_block(d1, s3, 256)
|
32 |
+
d3 = decoder_block(d2, s2, 128)
|
33 |
+
d4 = decoder_block(d3, s1, 64)
|
34 |
+
|
35 |
+
output_layer = Conv2D(1, 1, padding="same", activation="sigmoid")(d4)
|
36 |
+
|
37 |
+
model = Model(input_layer, output_layer, name="U-Net")
|
38 |
+
return model
|
39 |
+
|
40 |
model = build_model(input_shape=(size, size, 1))
|
41 |
+
model.compile(loss="binary_crossentropy", optimizer="Adam", metrics=["accuracy"])
|
42 |
model.load_weights('BreastCancerSegmentation.h5')
|
43 |
+
size = 128
|
44 |
|
45 |
def preprocess_image(image, size=128):
|
46 |
image = cv2.resize(image, (size, size))
|