Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import tensorflow as tf | |
from keras.models import Model | |
from keras.layers import Input, Conv2D, MaxPooling2D, Conv2DTranspose, concatenate | |
from keras.optimizers import Adam | |
def build_model(input_shape): | |
size=128 | |
model = build_model(input_shape=(size, size, 1)) | |
model.load_weights('BreastCancerSegmentation.h5') | |
return model | |
def preprocess_image(image, size: int=128): | |
image = cv2.resize(image, (size,size)) | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
image = image/255. | |
return image | |
def segment(image): | |
image = preprocess_image(image, size=size) | |
image = np.expand_dims(image, 0) | |
output = model.predict(image, verbose=0) | |
mask_image = output[0] | |
mask_image = np.squeeze(mask_image, -1) | |
mask_image *= 255 | |
mask_image = mask_image.astype(np.uint8) | |
mask_image = Image.fromarray(mask_image).convert("L") | |
return mask_image | |
if __name__ == "__main__": | |
gr.Interface( | |
fn=segment, | |
inputs="image", | |
outputs=gr.Image(type="pil", label="Breast Cancer Mask"), | |
examples = [["/content/benign(10).png"], ["/content/benign(109).png"]], | |
title = "Breast Cancer Ultrasound Image Segmentation", | |
description = "Check out this exciting development in the field of breast cancer diagnosis and treatment! A demo of Breast Cancer Ultrasound Image Segmentation has been developed. Upload image file, or try out one of the examples below!" | |
).launch(share=True, debug=True) |