import gradio as gr from PIL import Image import numpy as np import cv2 from lang_sam import LangSAM from color_matcher import ColorMatcher from color_matcher.normalizer import Normalizer import torch import warnings # Suppress specific warnings if desired warnings.filterwarnings("ignore", category=UserWarning) # Device configuration: Use CUDA if available, else CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Load the LangSAM model model = LangSAM() # Use the default model or specify custom checkpoint if necessary # Note: Removed model.to(device) since LangSAM does not support it def extract_masks(image_pil, prompts): """ Extracts masks for each prompt using the LangSAM model. Args: image_pil (PIL.Image): The input image. prompts (str): Comma-separated prompts for segmentation. Returns: dict: A dictionary mapping each prompt to its corresponding binary mask. """ prompts_list = [p.strip() for p in prompts.split(',') if p.strip()] masks_dict = {} with torch.no_grad(): # Disable gradient computation for inference for prompt in prompts_list: # Ensure the model uses the correct device internally masks, boxes, phrases, logits = model.predict(image_pil, prompt) if masks is not None and len(masks) > 0: # Move masks to CPU and convert to numpy masks_np = masks[0].cpu().numpy() mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask masks_dict[prompt] = mask return masks_dict def apply_color_matching(source_img_np, ref_img_np): """ Applies color matching from the reference image to the source image. Args: source_img_np (numpy.ndarray): Source image in NumPy array format. ref_img_np (numpy.ndarray): Reference image in NumPy array format. Returns: numpy.ndarray: Color-matched image. """ # Initialize ColorMatcher cm = ColorMatcher() # Apply color matching img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl') # Normalize the result img_res = Normalizer(img_res).uint8_norm() return img_res def process_image(current_image_pil, selected_prompt, masks_dict, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history): """ Processes the image by applying replacement and/or color grading based on user input. Args: current_image_pil (PIL.Image): The current image to be edited. selected_prompt (str): The selected segment prompt. masks_dict (dict): Dictionary of masks for each prompt. replacement_image_pil (PIL.Image): Replacement image (optional). color_ref_image_pil (PIL.Image): Color reference image (optional). apply_replacement (bool): Flag to apply replacement. apply_color_grading (bool): Flag to apply color grading. apply_color_to_full_image (bool): Flag to apply color grading to the full image. blending_amount (int): Amount for blending the mask. image_history (list): History of images for undo functionality. Returns: tuple: Updated image, status message, updated history, and image display. """ # Check if current_image_pil is None if current_image_pil is None: return None, "No current image to edit.", image_history, None if not apply_replacement and not apply_color_grading: return current_image_pil, "No changes applied. Please select at least one operation.", image_history, current_image_pil if apply_replacement and replacement_image_pil is None: return current_image_pil, "Replacement image not provided.", image_history, current_image_pil if apply_color_grading and color_ref_image_pil is None: return current_image_pil, "Color reference image not provided.", image_history, current_image_pil # Get the mask from masks_dict if selected_prompt not in masks_dict: return current_image_pil, f"No mask available for selected segment: {selected_prompt}", image_history, current_image_pil mask = masks_dict[selected_prompt] # Save current image to history for undo if image_history is None: image_history = [] image_history.append(current_image_pil.copy()) # Proceed with replacement or color matching current_image_np = np.array(current_image_pil) result_image_np = current_image_np.copy() # Create mask with blending # First, normalize mask to range [0,1] mask_normalized = mask.astype(np.float32) / 255.0 # Apply blending by blurring the mask if blending_amount > 0: # The kernel size for blurring; larger blending_amount means more blur kernel_size = int(blending_amount) if kernel_size % 2 == 0: kernel_size += 1 # Kernel size must be odd mask_blurred = cv2.GaussianBlur(mask_normalized, (kernel_size, kernel_size), 0) else: mask_blurred = mask_normalized # Convert mask to 3 channels mask_blurred_3ch = cv2.merge([mask_blurred, mask_blurred, mask_blurred]) # If apply replacement if apply_replacement: # Resize replacement image to match current image replacement_image_resized = replacement_image_pil.resize(current_image_pil.size) replacement_image_np = np.array(replacement_image_resized) # Blend the replacement image with the current image using the mask result_image_np = (replacement_image_np.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8) # If apply color grading if apply_color_grading: # Convert color reference image to numpy color_ref_image_np = np.array(color_ref_image_pil) if apply_color_to_full_image: # Apply color matching to the full image color_matched_image = apply_color_matching(result_image_np, color_ref_image_np) result_image_np = color_matched_image else: # Apply color matching only to the masked area # Extract the masked area masked_region = (result_image_np.astype(np.float32) * mask_blurred_3ch).astype(np.uint8) # Apply color matching color_matched_region = apply_color_matching(masked_region, color_ref_image_np) # Blend the color matched region back into the result image result_image_np = (color_matched_region.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8) # Convert result back to PIL Image result_image_pil = Image.fromarray(result_image_np) # Update current_image_pil current_image_pil = result_image_pil return current_image_pil, f"Applied changes to '{selected_prompt}'", image_history, current_image_pil def undo(image_history): """ Undoes the last image edit by reverting to the previous image in the history. Args: image_history (list): History of images. Returns: tuple: Reverted image, updated history, and image display. """ if image_history and len(image_history) > 1: # Pop the last image image_history.pop() # Return the previous image current_image_pil = image_history[-1] return current_image_pil, image_history, current_image_pil elif image_history and len(image_history) == 1: current_image_pil = image_history[0] return current_image_pil, image_history, current_image_pil else: # Cannot undo return None, [], None def gradio_interface(): """ Defines and launches the Gradio interface for continuous image editing. """ with gr.Blocks() as demo: # Define the state variables image_history = gr.State([]) current_image_pil = gr.State(None) masks_dict = gr.State({}) # Store masks for each prompt gr.Markdown("## Continuous Image Editing with LangSAM") with gr.Row(): with gr.Column(): initial_image = gr.Image(type="pil", label="Upload Image") prompts = gr.Textbox(lines=1, placeholder="Enter prompts separated by commas (e.g., sky, grass)", label="Prompts") segment_button = gr.Button("Segment Image") segment_dropdown = gr.Dropdown(label="Select Segment", choices=[], allow_custom_value=True) replacement_image = gr.Image(type="pil", label="Replacement Image (optional)") color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)") apply_replacement = gr.Checkbox(label="Apply Replacement", value=False) apply_color_grading = gr.Checkbox(label="Apply Color Grading", value=False) apply_color_to_full_image = gr.Checkbox(label="Apply Color Correction to Full Image", value=False) blending_amount = gr.Slider(minimum=0, maximum=500, step=1, label="Blending Amount", value=150) apply_button = gr.Button("Apply Changes") undo_button = gr.Button("Undo") with gr.Column(): current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False) status = gr.Textbox(lines=2, interactive=False, label="Status") def initialize_image(initial_image_pil): """ Initializes the image history and sets up the initial image. Args: initial_image_pil (PIL.Image): The uploaded initial image. Returns: tuple: Updated states and status message. """ if initial_image_pil is not None: image_history = [initial_image_pil] current_image_pil = initial_image_pil return current_image_pil, image_history, initial_image_pil, {}, gr.update(choices=[], value=None), "Image loaded." else: return None, [], None, {}, gr.update(choices=[], value=None), "No image loaded." # When the initial image is uploaded, initialize the image history initial_image.upload( fn=initialize_image, inputs=initial_image, outputs=[current_image_pil, image_history, current_image_display, masks_dict, segment_dropdown, status] ) # Segment button click def segment_image_wrapper(current_image_pil, prompts): """ Handles the segmentation of the image based on user prompts. Args: current_image_pil (PIL.Image): The current image. prompts (str): Comma-separated prompts. Returns: tuple: Status message, updated masks, and dropdown updates. """ if current_image_pil is None: return "No image uploaded.", {}, gr.update(choices=[], value=None) masks = extract_masks(current_image_pil, prompts) if not masks: return "No masks detected for the given prompts.", {}, gr.update(choices=[], value=None) dropdown_choices = list(masks.keys()) return "Segmentation completed.", masks, gr.update(choices=dropdown_choices, value=dropdown_choices[0]) segment_button.click( fn=segment_image_wrapper, inputs=[current_image_pil, prompts], outputs=[status, masks_dict, segment_dropdown] ) # Apply button click apply_button.click( fn=process_image, inputs=[ current_image_pil, segment_dropdown, masks_dict, replacement_image, color_ref_image, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history ], outputs=[current_image_pil, status, image_history, current_image_display] ) # Undo button click undo_button.click( fn=undo, inputs=image_history, outputs=[current_image_pil, image_history, current_image_display] ) demo.launch(share=True) # Run the Gradio Interface if __name__ == "__main__": gradio_interface()