File size: 1,405 Bytes
365f787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
from color_matcher import ColorMatcher
from color_matcher.normalizer import Normalizer
import numpy as np
import cv2
from PIL import Image

# Function to apply color correction
def color_match(source_img, reference_img):
    # Convert PIL images to OpenCV format (numpy arrays)
    img_src = np.array(source_img)
    img_ref = np.array(reference_img)
    
    # Ensure images are in RGB format (3 channels)
    if img_src.shape[2] == 4:
        img_src = cv2.cvtColor(img_src, cv2.COLOR_RGBA2RGB)
    if img_ref.shape[2] == 4:
        img_ref = cv2.cvtColor(img_ref, cv2.COLOR_RGBA2RGB)

    # Apply color matching
    cm = ColorMatcher()
    img_res = cm.transfer(src=img_src, ref=img_ref, method='mkl')
    
    # Normalize the result
    img_res = Normalizer(img_res).uint8_norm()

    # Convert back to PIL for displaying in Gradio
    img_res_pil = Image.fromarray(img_res)
    
    return img_res_pil

# Gradio Interface
def gradio_interface():
    # Define input and output components
    inputs = [
        gr.Image(type="pil", label="Source Image"),
        gr.Image(type="pil", label="Reference Image")
    ]
    outputs = gr.Image(type="pil", label="Resulting Image")

    # Launch Gradio app
    gr.Interface(fn=color_match, inputs=inputs, outputs=outputs, title="Color Matching Tool").launch()

# Run the Gradio Interface
if __name__ == "__main__":
    gradio_interface()