import streamlit as st import os import json import pandas as pd import random from datetime import datetime from os.path import join from src import ( preprocess_and_load_df, get_from_user, ask_question, ) from dotenv import load_dotenv from langchain_groq import ChatGroq from langchain_google_genai import ChatGoogleGenerativeAI from streamlit_feedback import streamlit_feedback from huggingface_hub import HfApi from datasets import load_dataset, get_dataset_config_info, Dataset from PIL import Image import time import uuid import asyncio # Gemini API requires async try: asyncio.get_running_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # Page config with beautiful theme st.set_page_config( page_title="VayuChat - AI Air Quality Assistant", page_icon="V", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS for beautiful styling st.markdown(""" """, unsafe_allow_html=True) # JavaScript for interactions st.markdown(""" """, unsafe_allow_html=True) # FORCE reload environment variables load_dotenv(override=True) # Get API keys Groq_Token = os.getenv("GROQ_API_KEY") hf_token = os.getenv("HF_TOKEN") gemini_token = os.getenv("GEMINI_TOKEN") # Model order is decided by this models = { "gpt-oss-120b": "openai/gpt-oss-120b", "qwen3-32b": "qwen/qwen3-32b", "gpt-oss-20b": "openai/gpt-oss-20b", "llama4 maverik":"meta-llama/llama-4-maverick-17b-128e-instruct", "llama3.3": "llama-3.3-70b-versatile", "deepseek-R1": "deepseek-r1-distill-llama-70b", "gemini-2.5-flash": "gemini-2.5-flash", "gemini-2.5-pro": "gemini-2.5-pro", "gemini-2.5-flash-lite": "gemini-2.5-flash-lite", "gemini-2.0-flash": "gemini-2.0-flash", "gemini-2.0-flash-lite": "gemini-2.0-flash-lite", # "llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct" # "llama3.1": "llama-3.1-8b-instant" } self_path = os.path.dirname(os.path.abspath(__file__)) # Initialize session ID for this session if "session_id" not in st.session_state: st.session_state.session_id = str(uuid.uuid4()) def upload_feedback(feedback, error, output, last_prompt, code, status): """Enhanced feedback upload function with better logging and error handling""" try: if not hf_token or hf_token.strip() == "": st.warning("Cannot upload feedback - HF_TOKEN not available") return False # Create comprehensive feedback data feedback_data = { "timestamp": datetime.now().isoformat(), "session_id": st.session_state.session_id, "feedback_score": feedback.get("score", ""), "feedback_comment": feedback.get("text", ""), "user_prompt": last_prompt, "ai_output": str(output), "generated_code": code or "", "error_message": error or "", "is_image_output": status.get("is_image", False), "success": not bool(error) } # Create unique folder name with timestamp timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S") random_id = str(uuid.uuid4())[:8] folder_name = f"feedback_{timestamp_str}_{random_id}" # Create markdown feedback file markdown_content = f"""# VayuChat Feedback Report ## Session Information - **Timestamp**: {feedback_data['timestamp']} - **Session ID**: {feedback_data['session_id']} ## User Interaction **Prompt**: {feedback_data['user_prompt']} ## AI Response **Output**: {feedback_data['ai_output']} ## Generated Code ```python {feedback_data['generated_code']} ``` ## Technical Details - **Error Message**: {feedback_data['error_message']} - **Is Image Output**: {feedback_data['is_image_output']} - **Success**: {feedback_data['success']} ## User Feedback - **Score**: {feedback_data['feedback_score']} - **Comments**: {feedback_data['feedback_comment']} """ # Save markdown file locally markdown_filename = f"{folder_name}.md" markdown_local_path = f"/tmp/{markdown_filename}" with open(markdown_local_path, "w", encoding="utf-8") as f: f.write(markdown_content) # Upload to Hugging Face api = HfApi(token=hf_token) # Upload markdown feedback api.upload_file( path_or_fileobj=markdown_local_path, path_in_repo=f"data/{markdown_filename}", repo_id="SustainabilityLabIITGN/VayuChat_Feedback", repo_type="dataset", ) # Upload image if it exists and is an image output if status.get("is_image", False) and isinstance(output, str) and os.path.exists(output): try: image_filename = f"{folder_name}_plot.png" api.upload_file( path_or_fileobj=output, path_in_repo=f"data/{image_filename}", repo_id="SustainabilityLabIITGN/VayuChat_Feedback", repo_type="dataset", ) except Exception as img_error: print(f"Error uploading image: {img_error}") # Clean up local files if os.path.exists(markdown_local_path): os.remove(markdown_local_path) st.success("Feedback uploaded successfully!") return True except Exception as e: st.error(f"Error uploading feedback: {e}") print(f"Feedback upload error: {e}") return False # Filter available models available_models = [] model_names = list(models.keys()) groq_models = [] gemini_models = [] for model_name in model_names: if "gemini" not in model_name: groq_models.append(model_name) else: gemini_models.append(model_name) if Groq_Token and Groq_Token.strip(): available_models.extend(groq_models) if gemini_token and gemini_token.strip(): available_models.extend(gemini_models) if not available_models: st.error("No API keys available! Please set up your API keys in the .env file") st.stop() # Set GPT-OSS-120B as default if available default_index = 0 if "gpt-oss-120b" in available_models: default_index = available_models.index("gpt-oss-120b") elif "deepseek-R1" in available_models: default_index = available_models.index("deepseek-R1") # Simple header - just title st.title("VayuChat") # Load data with caching for better performance @st.cache_data def load_data(): return preprocess_and_load_df(join(self_path, "Data.csv")) try: df = load_data() # Data loaded silently - no success message needed except Exception as e: st.error(f"Error loading data: {e}") st.stop() inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2" image_path = "IITGN_Logo.png" # Clean sidebar with st.sidebar: # Model selector at top of sidebar for easy access model_name = st.selectbox( "🤖 AI Model:", available_models, index=default_index, help="Choose your AI model - easily accessible without scrolling!" ) st.markdown("---") # Quick Queries Section st.markdown("### 💭 Quick Queries") # Load quick prompts with caching @st.cache_data def load_questions(): questions = [] questions_file = join(self_path, "questions.txt") if os.path.exists(questions_file): try: with open(questions_file, 'r', encoding='utf-8') as f: content = f.read() questions = [q.strip() for q in content.split("\n") if q.strip()] except Exception as e: questions = [] return questions questions = load_questions() # Add default prompts if file doesn't exist or is empty if not questions: questions = [ "Which month had highest pollution?", "Which city has worst air quality?", "Show annual PM2.5 average", "Plot monthly average PM2.5 for 2023", "List all cities by pollution level", "Compare winter vs summer pollution", "Show seasonal pollution patterns", "Which areas exceed WHO guidelines?", "What are peak pollution hours?", "Show PM10 vs PM2.5 comparison", "Which station records highest variability in PM2.5?", "Calculate pollution improvement rate year-over-year by city", "Identify cities with PM2.5 levels consistently above 50 μg/m³ for >6 months", "Find correlation between PM2.5 and PM10 across different seasons and cities", "Compare weekday vs weekend levels", "Plot yearly trend analysis", "Show pollution distribution by city", "Create correlation plot between pollutants" ] # Quick query buttons in sidebar selected_prompt = None # Show all questions but in a scrollable format if len(questions) > 0: st.markdown("**Select a question to analyze:**") # Getting Started section with simple questions getting_started_questions = questions[:10] # First 10 simple questions with st.expander("🚀 Getting Started - Simple Questions", expanded=True): for i, q in enumerate(getting_started_questions): if st.button(q, key=f"start_q_{i}", use_container_width=True, help=f"Analyze: {q}"): selected_prompt = q st.session_state.last_selected_prompt = q # Create expandable sections for better organization with st.expander("📊 NCAP Funding & Policy Analysis", expanded=False): for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['ncap', 'funding', 'investment', 'rupee'])]): if st.button(q, key=f"ncap_q_{i}", use_container_width=True, help=f"Analyze: {q}"): selected_prompt = q st.session_state.last_selected_prompt = q with st.expander("🌬️ Meteorology & Environmental Factors", expanded=False): for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['wind', 'temperature', 'humidity', 'rainfall', 'meteorological', 'monsoon', 'barometric'])]): if st.button(q, key=f"met_q_{i}", use_container_width=True, help=f"Analyze: {q}"): selected_prompt = q st.session_state.last_selected_prompt = q with st.expander("👥 Population & Demographics", expanded=False): for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['population', 'capita', 'density', 'exposure'])]): if st.button(q, key=f"pop_q_{i}", use_container_width=True, help=f"Analyze: {q}"): selected_prompt = q st.session_state.last_selected_prompt = q with st.expander("🏭 Multi-Pollutant Analysis", expanded=False): for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['ozone', 'no2', 'correlation', 'multi-pollutant', 'interaction'])]): if st.button(q, key=f"multi_q_{i}", use_container_width=True, help=f"Analyze: {q}"): selected_prompt = q st.session_state.last_selected_prompt = q with st.expander("📈 Other Analysis Questions", expanded=False): remaining_questions = [q for q in questions if not any(any(word in q.lower() for word in category) for category in [ ['ncap', 'funding', 'investment', 'rupee'], ['wind', 'temperature', 'humidity', 'rainfall', 'meteorological', 'monsoon', 'barometric'], ['population', 'capita', 'density', 'exposure'], ['ozone', 'no2', 'correlation', 'multi-pollutant', 'interaction'] ])] for i, q in enumerate(remaining_questions): if st.button(q, key=f"other_q_{i}", use_container_width=True, help=f"Analyze: {q}"): selected_prompt = q st.session_state.last_selected_prompt = q st.markdown("---") # Clear Chat Button if st.button("Clear Chat", use_container_width=True): st.session_state.responses = [] st.session_state.processing = False st.session_state.session_id = str(uuid.uuid4()) try: st.rerun() except AttributeError: st.experimental_rerun() # Initialize session state first if "responses" not in st.session_state: st.session_state.responses = [] if "processing" not in st.session_state: st.session_state.processing = False if "session_id" not in st.session_state: st.session_state.session_id = str(uuid.uuid4()) def show_custom_response(response): """Custom response display function with improved styling""" role = response.get("role", "assistant") content = response.get("content", "") if role == "user": # User message with right alignment - reduced margins st.markdown(f"""
Learn more about VayuChat in our Research Paper.
#Time Range: 2022 - 2023
Locations: 300+ cities across India
Records: 100,000+ measurements