Made header responsive
Browse files
app.py
CHANGED
@@ -36,1050 +36,1071 @@ st.set_page_config(
|
|
36 |
initial_sidebar_state="expanded"
|
37 |
)
|
38 |
|
39 |
-
#
|
40 |
-
st.markdown("""
|
41 |
-
<
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
}
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
margin-bottom: 0.5rem !important;
|
59 |
-
}
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
}
|
72 |
|
73 |
-
|
74 |
-
[data-testid="stSidebar"] > div:first-child {
|
75 |
-
height: 100vh;
|
76 |
-
overflow-y: auto;
|
77 |
-
padding-bottom: 2rem;
|
78 |
-
}
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
color: #343a40;
|
102 |
-
font-size: 2.5rem;
|
103 |
-
font-weight: 700;
|
104 |
-
margin-bottom: 0.5rem;
|
105 |
-
}
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
text-align: center;
|
110 |
-
color: #6c757d;
|
111 |
-
font-size: 1.1rem;
|
112 |
-
margin-bottom: 1.5rem;
|
113 |
-
}
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
background-color: #f1f3f5;
|
118 |
-
border-left: 4px solid #0d6efd;
|
119 |
-
padding: 1rem;
|
120 |
-
margin-bottom: 1.5rem;
|
121 |
-
border-radius: 6px;
|
122 |
-
color: #495057;
|
123 |
-
text-align: left;
|
124 |
-
}
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
gap: 8px;
|
131 |
-
margin-bottom: 1.5rem;
|
132 |
-
padding: 1rem;
|
133 |
-
background-color: #f8f9fa;
|
134 |
-
border-radius: 10px;
|
135 |
-
border: 1px solid #dee2e6;
|
136 |
-
}
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
padding: 8px 16px;
|
143 |
-
border-radius: 20px;
|
144 |
-
font-size: 0.9rem;
|
145 |
-
cursor: pointer;
|
146 |
-
transition: all 0.2s ease;
|
147 |
-
white-space: nowrap;
|
148 |
-
}
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
max-width: 95%;
|
162 |
-
}
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
margin-bottom: 5px;
|
183 |
-
}
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
margin: 1rem 0;
|
192 |
-
margin-left: 0;
|
193 |
-
margin-right: auto;
|
194 |
-
max-width: 70%;
|
195 |
-
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
196 |
-
animation: pulse 2s infinite;
|
197 |
-
}
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
203 |
}
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
background-color: #f8f9fa;
|
208 |
-
border: 1px solid #dee2e6;
|
209 |
-
padding: 1rem;
|
210 |
-
border-radius: 8px;
|
211 |
-
margin: 1rem 0;
|
212 |
}
|
213 |
|
214 |
-
|
215 |
-
.
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
border: 1px solid #badbcc;
|
221 |
}
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
# background: #ffffff !important;
|
236 |
-
# padding: 0.75rem 1rem !important;
|
237 |
-
# font-size: 1rem !important;
|
238 |
-
# width: 100% !important;
|
239 |
-
# max-width: 70% !important;
|
240 |
-
# margin: 0 !important;
|
241 |
-
# box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important;
|
242 |
-
# transition: all 0.2s ease !important;
|
243 |
-
# }
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
#
|
248 |
-
|
249 |
-
|
|
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
padding: 0 !important;
|
254 |
-
margin: 0 !important;
|
255 |
-
}
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
#
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
274 |
|
275 |
-
.st-emotion-cache-f4ro0r {
|
276 |
-
align-items = center;
|
277 |
-
}
|
278 |
|
279 |
-
/* Fix the main chat input container alignment */
|
280 |
-
[data-testid="stChatInput"] {
|
281 |
-
position: fixed !important;
|
282 |
-
bottom: 0.5rem !important;
|
283 |
-
left: 6rem !important;
|
284 |
-
right: 0 !important;
|
285 |
-
background: #ffffff !important;
|
286 |
-
width: 65% !important;
|
287 |
-
box-shadow: 0 -2px 10px rgba(0, 0, 0, 0.1) !important;
|
288 |
-
}
|
289 |
|
290 |
-
/* Adjust main content to account for fixed chat input */
|
291 |
-
.main .block-container {
|
292 |
-
padding-bottom: 100px !important;
|
293 |
-
}
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
-
width: 100% !important; /* fill the parent container */
|
317 |
-
box-sizing: border-box !important;
|
318 |
-
}
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
-
/* Code container styling */
|
328 |
-
.code-container {
|
329 |
-
margin: 1rem 0;
|
330 |
-
border: 1px solid #d1d5db;
|
331 |
-
border-radius: 12px;
|
332 |
-
background: white;
|
333 |
-
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
334 |
-
}
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
-
|
349 |
-
|
350 |
-
}
|
351 |
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
color: #1e293b;
|
356 |
-
display: flex;
|
357 |
-
align-items: center;
|
358 |
-
gap: 0.5rem;
|
359 |
-
}
|
360 |
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
|
|
|
|
|
|
371 |
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
|
|
|
|
382 |
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
padding:
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
}
|
390 |
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
}
|
397 |
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
border-radius: 4px;
|
402 |
-
font-weight: 600;
|
403 |
-
color: #92400e;
|
404 |
}
|
405 |
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
padding: 0.75rem 1rem;
|
410 |
-
margin: 1rem 0;
|
411 |
-
font-size: 0.875rem;
|
412 |
-
color: #475569;
|
413 |
}
|
414 |
|
415 |
-
/*
|
416 |
-
|
417 |
-
|
418 |
-
|
|
|
|
|
419 |
|
420 |
-
/*
|
421 |
-
|
422 |
-
height:
|
423 |
overflow-y: auto;
|
|
|
424 |
}
|
425 |
-
</style>
|
426 |
-
""", unsafe_allow_html=True)
|
427 |
|
428 |
-
|
429 |
-
|
430 |
-
<script>
|
431 |
-
function scrollToBottom() {
|
432 |
-
setTimeout(function() {
|
433 |
-
const mainContainer = document.querySelector('.main-container');
|
434 |
-
if (mainContainer) {
|
435 |
-
mainContainer.scrollTop = mainContainer.scrollHeight;
|
436 |
-
}
|
437 |
-
window.scrollTo(0, document.body.scrollHeight);
|
438 |
-
}, 100);
|
439 |
}
|
440 |
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
if (codeBlock.style.display === 'none') {
|
446 |
-
codeBlock.style.display = 'block';
|
447 |
-
toggleText.textContent = 'Click to collapse';
|
448 |
-
} else {
|
449 |
-
codeBlock.style.display = 'none';
|
450 |
-
toggleText.textContent = 'Click to expand';
|
451 |
-
}
|
452 |
}
|
453 |
-
</script>
|
454 |
-
""", unsafe_allow_html=True)
|
455 |
|
456 |
-
|
457 |
-
|
|
|
|
|
458 |
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
gemini_token = os.getenv("GEMINI_TOKEN")
|
463 |
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
"deepseek-R1": "deepseek-r1-distill-llama-70b",
|
472 |
-
"gemini-2.5-flash": "gemini-2.5-flash",
|
473 |
-
"gemini-2.5-pro": "gemini-2.5-pro",
|
474 |
-
"gemini-2.5-flash-lite": "gemini-2.5-flash-lite",
|
475 |
-
"gemini-2.0-flash": "gemini-2.0-flash",
|
476 |
-
"gemini-2.0-flash-lite": "gemini-2.0-flash-lite",
|
477 |
-
# "llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct"
|
478 |
-
# "llama3.1": "llama-3.1-8b-instant"
|
479 |
}
|
480 |
|
481 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
|
483 |
-
|
484 |
-
|
485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
|
|
|
|
|
|
|
|
|
|
493 |
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
"success": not bool(error)
|
506 |
-
}
|
507 |
-
|
508 |
-
# Create unique folder name with timestamp
|
509 |
-
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
|
510 |
-
random_id = str(uuid.uuid4())[:8]
|
511 |
-
folder_name = f"feedback_{timestamp_str}_{random_id}"
|
512 |
-
|
513 |
-
# Create markdown feedback file
|
514 |
-
markdown_content = f"""# VayuChat Feedback Report
|
515 |
|
516 |
-
|
517 |
-
-
|
518 |
-
-
|
|
|
519 |
|
520 |
-
|
521 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
|
523 |
-
|
524 |
-
|
|
|
|
|
|
|
525 |
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
|
|
|
|
|
|
|
|
530 |
|
531 |
-
|
532 |
-
-
|
533 |
-
|
534 |
-
-
|
|
|
535 |
|
536 |
-
|
537 |
-
-
|
538 |
-
-
|
539 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
f.write(markdown_content)
|
547 |
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
repo_type="dataset",
|
557 |
-
)
|
558 |
-
|
559 |
-
# Upload image if it exists and is an image output
|
560 |
-
if status.get("is_image", False) and isinstance(output, str) and os.path.exists(output):
|
561 |
-
try:
|
562 |
-
image_filename = f"{folder_name}_plot.png"
|
563 |
-
api.upload_file(
|
564 |
-
path_or_fileobj=output,
|
565 |
-
path_in_repo=f"data/{image_filename}",
|
566 |
-
repo_id="SustainabilityLabIITGN/VayuChat_Feedback",
|
567 |
-
repo_type="dataset",
|
568 |
-
)
|
569 |
-
except Exception as img_error:
|
570 |
-
print(f"Error uploading image: {img_error}")
|
571 |
-
|
572 |
-
# Clean up local files
|
573 |
-
if os.path.exists(markdown_local_path):
|
574 |
-
os.remove(markdown_local_path)
|
575 |
-
|
576 |
-
st.success("Feedback uploaded successfully!")
|
577 |
-
return True
|
578 |
-
|
579 |
-
except Exception as e:
|
580 |
-
st.error(f"Error uploading feedback: {e}")
|
581 |
-
print(f"Feedback upload error: {e}")
|
582 |
-
return False
|
583 |
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
else:
|
593 |
-
gemini_models.append(model_name)
|
594 |
-
if Groq_Token and Groq_Token.strip():
|
595 |
-
available_models.extend(groq_models)
|
596 |
-
if gemini_token and gemini_token.strip():
|
597 |
-
available_models.extend(gemini_models)
|
598 |
|
599 |
-
|
600 |
-
|
601 |
-
|
|
|
|
|
|
|
|
|
602 |
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
609 |
|
610 |
-
#
|
|
|
|
|
|
|
|
|
611 |
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
padding: 0.5rem 0;
|
618 |
-
gap: 12px;
|
619 |
-
border-bottom: 1px solid #e5e7eb;
|
620 |
-
margin-bottom: 1rem;
|
621 |
-
'>
|
622 |
-
<img src='https://sustainability-lab.github.io/images/logo_light.svg'
|
623 |
-
style='height: 80px;' />
|
624 |
-
<div style='display: flex; flex-direction: column; line-height: 1.2;'>
|
625 |
-
<h1 style='
|
626 |
-
margin: 0;
|
627 |
-
font-size: 1.5rem;
|
628 |
-
font-weight: 700;
|
629 |
-
color: #2563eb;
|
630 |
-
'>VayuChat</h1>
|
631 |
-
<span style='
|
632 |
-
font-size: 0.85rem;
|
633 |
-
color: #6b7280;
|
634 |
-
font-weight: 500;
|
635 |
-
'>AI Air Quality Analysis • Sustainability Lab, IIT Gandhinagar</span>
|
636 |
-
</div>
|
637 |
-
</div>
|
638 |
-
""", unsafe_allow_html=True)
|
639 |
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
644 |
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
st.stop()
|
651 |
|
652 |
-
|
653 |
-
|
|
|
654 |
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
)
|
664 |
-
|
665 |
-
st.markdown("---")
|
666 |
-
|
667 |
-
# Quick Queries Section
|
668 |
-
st.markdown("### 💭 Quick Queries")
|
669 |
-
|
670 |
-
# Load quick prompts with caching
|
671 |
-
@st.cache_data
|
672 |
-
def load_questions():
|
673 |
-
questions = []
|
674 |
-
questions_file = join(self_path, "questions.txt")
|
675 |
-
if os.path.exists(questions_file):
|
676 |
-
try:
|
677 |
-
with open(questions_file, 'r', encoding='utf-8') as f:
|
678 |
-
content = f.read()
|
679 |
-
questions = [q.strip() for q in content.split("\n") if q.strip()]
|
680 |
-
except Exception as e:
|
681 |
-
questions = []
|
682 |
-
return questions
|
683 |
-
|
684 |
-
questions = load_questions()
|
685 |
-
|
686 |
-
# Add default prompts if file doesn't exist or is empty
|
687 |
-
if not questions:
|
688 |
-
questions = [
|
689 |
-
"Which month had highest pollution?",
|
690 |
-
"Which city has worst air quality?",
|
691 |
-
"Show annual PM2.5 average",
|
692 |
-
"Plot monthly average PM2.5 for 2023",
|
693 |
-
"List all cities by pollution level",
|
694 |
-
"Compare winter vs summer pollution",
|
695 |
-
"Show seasonal pollution patterns",
|
696 |
-
"Which areas exceed WHO guidelines?",
|
697 |
-
"What are peak pollution hours?",
|
698 |
-
"Show PM10 vs PM2.5 comparison",
|
699 |
-
"Which station records highest variability in PM2.5?",
|
700 |
-
"Calculate pollution improvement rate year-over-year by city",
|
701 |
-
"Identify cities with PM2.5 levels consistently above 50 μg/m³ for >6 months",
|
702 |
-
"Find correlation between PM2.5 and PM10 across different seasons and cities",
|
703 |
-
"Compare weekday vs weekend levels",
|
704 |
-
"Plot yearly trend analysis",
|
705 |
-
"Show pollution distribution by city",
|
706 |
-
"Create correlation plot between pollutants"
|
707 |
-
]
|
708 |
-
|
709 |
-
# Quick query buttons in sidebar
|
710 |
-
selected_prompt = None
|
711 |
-
|
712 |
-
|
713 |
-
# Show all questions but in a scrollable format
|
714 |
-
if len(questions) > 0:
|
715 |
-
st.markdown("**Select a question to analyze:**")
|
716 |
-
|
717 |
-
# Getting Started section with simple questions
|
718 |
-
getting_started_questions = questions[:10] # First 10 simple questions
|
719 |
-
with st.expander("🚀 Getting Started - Simple Questions", expanded=True):
|
720 |
-
for i, q in enumerate(getting_started_questions):
|
721 |
-
if st.button(q, key=f"start_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
722 |
-
selected_prompt = q
|
723 |
-
st.session_state.last_selected_prompt = q
|
724 |
-
|
725 |
-
# Create expandable sections for better organization
|
726 |
-
with st.expander("📊 NCAP Funding & Policy Analysis", expanded=False):
|
727 |
-
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['ncap', 'funding', 'investment', 'rupee'])]):
|
728 |
-
if st.button(q, key=f"ncap_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
729 |
-
selected_prompt = q
|
730 |
-
st.session_state.last_selected_prompt = q
|
731 |
-
|
732 |
-
with st.expander("🌬️ Meteorology & Environmental Factors", expanded=False):
|
733 |
-
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['wind', 'temperature', 'humidity', 'rainfall', 'meteorological', 'monsoon', 'barometric'])]):
|
734 |
-
if st.button(q, key=f"met_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
735 |
-
selected_prompt = q
|
736 |
-
st.session_state.last_selected_prompt = q
|
737 |
-
|
738 |
-
with st.expander("👥 Population & Demographics", expanded=False):
|
739 |
-
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['population', 'capita', 'density', 'exposure'])]):
|
740 |
-
if st.button(q, key=f"pop_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
741 |
-
selected_prompt = q
|
742 |
-
st.session_state.last_selected_prompt = q
|
743 |
-
|
744 |
-
with st.expander("🏭 Multi-Pollutant Analysis", expanded=False):
|
745 |
-
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['ozone', 'no2', 'correlation', 'multi-pollutant', 'interaction'])]):
|
746 |
-
if st.button(q, key=f"multi_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
747 |
-
selected_prompt = q
|
748 |
-
st.session_state.last_selected_prompt = q
|
749 |
-
|
750 |
-
with st.expander("📈 Other Analysis Questions", expanded=False):
|
751 |
-
remaining_questions = [q for q in questions if not any(any(word in q.lower() for word in category) for category in [
|
752 |
-
['ncap', 'funding', 'investment', 'rupee'],
|
753 |
-
['wind', 'temperature', 'humidity', 'rainfall', 'meteorological', 'monsoon', 'barometric'],
|
754 |
-
['population', 'capita', 'density', 'exposure'],
|
755 |
-
['ozone', 'no2', 'correlation', 'multi-pollutant', 'interaction']
|
756 |
-
])]
|
757 |
-
for i, q in enumerate(remaining_questions):
|
758 |
-
if st.button(q, key=f"other_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
759 |
-
selected_prompt = q
|
760 |
-
st.session_state.last_selected_prompt = q
|
761 |
-
|
762 |
-
st.markdown("---")
|
763 |
-
|
764 |
-
|
765 |
-
# Clear Chat Button
|
766 |
-
if st.button("Clear Chat", use_container_width=True):
|
767 |
-
st.session_state.responses = []
|
768 |
-
st.session_state.processing = False
|
769 |
-
st.session_state.session_id = str(uuid.uuid4())
|
770 |
-
try:
|
771 |
-
st.rerun()
|
772 |
-
except AttributeError:
|
773 |
-
st.experimental_rerun()
|
774 |
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
st.session_state.processing = False
|
780 |
-
if "session_id" not in st.session_state:
|
781 |
-
st.session_state.session_id = str(uuid.uuid4())
|
782 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
783 |
|
|
|
|
|
|
|
784 |
|
|
|
|
|
|
|
|
|
|
|
|
|
785 |
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
content = response.get("content", "")
|
790 |
-
|
791 |
-
if role == "user":
|
792 |
-
# User message with right alignment - reduced margins
|
793 |
-
st.markdown(f"""
|
794 |
-
<div style='display: flex; justify-content: flex-end; margin: 1rem 0;'>
|
795 |
-
<div class='user-message'>
|
796 |
-
{content}
|
797 |
-
</div>
|
798 |
-
</div>
|
799 |
-
""", unsafe_allow_html=True)
|
800 |
-
elif role == "assistant":
|
801 |
-
# Check if content is an image filename - don't display the filename text
|
802 |
-
is_image_path = isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg', '.jpeg'])
|
803 |
-
|
804 |
-
# Check if content is a pandas DataFrame
|
805 |
-
import pandas as pd
|
806 |
-
is_dataframe = isinstance(content, pd.DataFrame)
|
807 |
-
|
808 |
-
# Check for errors first and display them with special styling
|
809 |
-
error = response.get("error")
|
810 |
-
timestamp = response.get("timestamp", "")
|
811 |
-
timestamp_display = f" • {timestamp}" if timestamp else ""
|
812 |
-
|
813 |
-
if error:
|
814 |
-
st.markdown(f"""
|
815 |
-
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
816 |
-
<div class='assistant-message'>
|
817 |
-
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
818 |
-
<div class='error-message'>
|
819 |
-
⚠️ <strong>Error:</strong> {error}
|
820 |
-
<br><br>
|
821 |
-
<em>💡 Try rephrasing your question or being more specific about what you'd like to analyze.</em>
|
822 |
-
</div>
|
823 |
-
</div>
|
824 |
-
</div>
|
825 |
-
""", unsafe_allow_html=True)
|
826 |
-
# Assistant message with left alignment - reduced margins
|
827 |
-
elif not is_image_path and not is_dataframe:
|
828 |
-
st.markdown(f"""
|
829 |
-
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
830 |
-
<div class='assistant-message'>
|
831 |
-
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
832 |
-
{content if isinstance(content, str) else str(content)}
|
833 |
-
</div>
|
834 |
-
</div>
|
835 |
-
""", unsafe_allow_html=True)
|
836 |
-
elif is_dataframe:
|
837 |
-
# Display DataFrame with nice formatting
|
838 |
-
st.markdown(f"""
|
839 |
-
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
840 |
-
<div class='assistant-message'>
|
841 |
-
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
842 |
-
Here are the results:
|
843 |
-
</div>
|
844 |
-
</div>
|
845 |
-
""", unsafe_allow_html=True)
|
846 |
-
|
847 |
-
# Add context info for dataframes
|
848 |
-
st.markdown("""
|
849 |
-
<div class='context-info'>
|
850 |
-
💡 This table is interactive - click column headers to sort, or scroll to view all data.
|
851 |
-
</div>
|
852 |
-
""", unsafe_allow_html=True)
|
853 |
-
|
854 |
-
st.dataframe(content, use_container_width=True)
|
855 |
-
|
856 |
-
# Show generated code with Streamlit expander
|
857 |
-
if response.get("gen_code"):
|
858 |
-
with st.expander("📋 View Generated Code", expanded=False):
|
859 |
-
st.code(response["gen_code"], language="python")
|
860 |
-
|
861 |
-
# Try to display image if content is a file path
|
862 |
-
try:
|
863 |
-
if isinstance(content, str) and (content.endswith('.png') or content.endswith('.jpg')):
|
864 |
-
if os.path.exists(content):
|
865 |
-
# Display image without showing filename
|
866 |
-
st.image(content, width=800)
|
867 |
-
return {"is_image": True}
|
868 |
-
# Also handle case where content shows filename but we want to show image
|
869 |
-
elif isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg']):
|
870 |
-
# Extract potential filename from content
|
871 |
-
import re
|
872 |
-
filename_match = re.search(r'([^/\\]+\.(?:png|jpg|jpeg))', content)
|
873 |
-
if filename_match:
|
874 |
-
filename = filename_match.group(1)
|
875 |
-
if os.path.exists(filename):
|
876 |
-
st.image(filename, width=800)
|
877 |
-
return {"is_image": True}
|
878 |
-
except:
|
879 |
-
pass
|
880 |
-
|
881 |
-
return {"is_image": False}
|
882 |
|
|
|
|
|
|
|
|
|
|
|
|
|
883 |
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
error = response.get("error", "")
|
893 |
-
output = response.get("content", "")
|
894 |
-
last_prompt = response.get("last_prompt", "")
|
895 |
-
code = response.get("gen_code", "")
|
896 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
897 |
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
if "feedback" in st.session_state.responses[response_id]:
|
902 |
-
# Show submitted feedback nicely
|
903 |
-
feedback_data = st.session_state.responses[response_id]["feedback"]
|
904 |
-
col1, col2 = st.columns([3, 1])
|
905 |
-
with col1:
|
906 |
-
st.markdown(f"""
|
907 |
-
<div style='
|
908 |
-
background: linear-gradient(135deg, #ecfdf5 0%, #d1fae5 100%);
|
909 |
-
border: 1px solid #a7f3d0;
|
910 |
-
border-radius: 8px;
|
911 |
-
padding: 0.75rem 1rem;
|
912 |
-
display: flex;
|
913 |
-
align-items: center;
|
914 |
-
gap: 8px;
|
915 |
-
'>
|
916 |
-
<span style='font-size: 1.1rem;'>{feedback_data.get('score', '')}</span>
|
917 |
-
<span style='color: #059669; font-weight: 500; font-size: 0.9rem;'>
|
918 |
-
Thanks for your feedback!
|
919 |
-
</span>
|
920 |
-
</div>
|
921 |
-
""", unsafe_allow_html=True)
|
922 |
-
with col2:
|
923 |
-
if st.button("🔄 Retry", key=f"retry_{response_id}", use_container_width=True):
|
924 |
-
user_prompt = ""
|
925 |
-
if response_id > 0:
|
926 |
-
user_prompt = st.session_state.responses[response_id-1].get("content", "")
|
927 |
-
if user_prompt:
|
928 |
-
if response_id > 0:
|
929 |
-
retry_prompt = st.session_state.responses[response_id-1].get("content", "")
|
930 |
-
del st.session_state.responses[response_id]
|
931 |
-
del st.session_state.responses[response_id-1]
|
932 |
-
st.session_state.follow_up_prompt = retry_prompt
|
933 |
-
st.rerun()
|
934 |
-
else:
|
935 |
-
# Clean feedback and retry layout
|
936 |
-
col1, col2, col3, col4 = st.columns([2, 2, 1, 1])
|
937 |
-
|
938 |
-
with col1:
|
939 |
-
if st.button("✨ Excellent", key=f"{feedback_key}_excellent", use_container_width=True):
|
940 |
-
feedback = {"score": "✨ Excellent", "text": ""}
|
941 |
-
st.session_state.responses[response_id]["feedback"] = feedback
|
942 |
-
st.rerun()
|
943 |
-
|
944 |
-
with col2:
|
945 |
-
if st.button("🔧 Needs work", key=f"{feedback_key}_poor", use_container_width=True):
|
946 |
-
feedback = {"score": "🔧 Needs work", "text": ""}
|
947 |
-
st.session_state.responses[response_id]["feedback"] = feedback
|
948 |
-
st.rerun()
|
949 |
-
|
950 |
-
with col4:
|
951 |
-
if st.button("🔄 Retry", key=f"retry_{response_id}", use_container_width=True):
|
952 |
-
user_prompt = ""
|
953 |
-
if response_id > 0:
|
954 |
-
user_prompt = st.session_state.responses[response_id-1].get("content", "")
|
955 |
-
if user_prompt:
|
956 |
-
if response_id > 0:
|
957 |
-
retry_prompt = st.session_state.responses[response_id-1].get("content", "")
|
958 |
-
del st.session_state.responses[response_id]
|
959 |
-
del st.session_state.responses[response_id-1]
|
960 |
-
st.session_state.follow_up_prompt = retry_prompt
|
961 |
-
st.rerun()
|
962 |
|
963 |
-
|
964 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
965 |
|
966 |
-
|
967 |
-
|
968 |
-
|
|
|
969 |
|
970 |
-
|
971 |
-
|
972 |
-
|
973 |
-
|
|
|
974 |
|
975 |
-
|
976 |
-
|
977 |
-
#
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
|
|
|
|
983 |
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
st.session_state.current_model = model_name
|
992 |
-
st.session_state.current_question = prompt
|
993 |
-
|
994 |
-
# Rerun to show processing indicator
|
995 |
-
st.rerun()
|
996 |
|
997 |
-
|
998 |
-
|
999 |
-
#
|
1000 |
-
|
1001 |
-
|
1002 |
-
|
1003 |
-
<div style='font-weight: 500;'>🤖 Processing with """ + str(st.session_state.get('current_model', 'Unknown')) + """</div>
|
1004 |
-
<div class='dots' style='display: inline-flex; gap: 2px;'>
|
1005 |
-
<div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out;'></div>
|
1006 |
-
<div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out; animation-delay: 0.16s;'></div>
|
1007 |
-
<div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out; animation-delay: 0.32s;'></div>
|
1008 |
-
</div>
|
1009 |
-
</div>
|
1010 |
-
<div style='font-size: 0.75rem; color: #6b7280; margin-top: 0.25rem;'>Analyzing data and generating response...</div>
|
1011 |
-
</div>
|
1012 |
-
<style>
|
1013 |
-
@keyframes bounce {
|
1014 |
-
0%, 80%, 100% { transform: scale(0.8); opacity: 0.5; }
|
1015 |
-
40% { transform: scale(1.2); opacity: 1; }
|
1016 |
-
}
|
1017 |
-
</style>
|
1018 |
-
""", unsafe_allow_html=True)
|
1019 |
-
|
1020 |
-
prompt = st.session_state.get("current_question")
|
1021 |
-
model_name = st.session_state.get("current_model")
|
1022 |
-
|
1023 |
-
try:
|
1024 |
-
response = ask_question(model_name=model_name, question=prompt)
|
1025 |
-
|
1026 |
-
if not isinstance(response, dict):
|
1027 |
-
response = {
|
1028 |
-
"role": "assistant",
|
1029 |
-
"content": "Error: Invalid response format",
|
1030 |
-
"gen_code": "",
|
1031 |
-
"ex_code": "",
|
1032 |
-
"last_prompt": prompt,
|
1033 |
-
"error": "Invalid response format",
|
1034 |
-
"timestamp": datetime.now().strftime("%H:%M")
|
1035 |
-
}
|
1036 |
-
|
1037 |
-
response.setdefault("role", "assistant")
|
1038 |
-
response.setdefault("content", "No content generated")
|
1039 |
-
response.setdefault("gen_code", "")
|
1040 |
-
response.setdefault("ex_code", "")
|
1041 |
-
response.setdefault("last_prompt", prompt)
|
1042 |
-
response.setdefault("error", None)
|
1043 |
-
response.setdefault("timestamp", datetime.now().strftime("%H:%M"))
|
1044 |
-
|
1045 |
-
except Exception as e:
|
1046 |
-
response = {
|
1047 |
-
"role": "assistant",
|
1048 |
-
"content": f"Sorry, I encountered an error: {str(e)}",
|
1049 |
-
"gen_code": "",
|
1050 |
-
"ex_code": "",
|
1051 |
-
"last_prompt": prompt,
|
1052 |
-
"error": str(e),
|
1053 |
-
"timestamp": datetime.now().strftime("%H:%M")
|
1054 |
-
}
|
1055 |
|
1056 |
-
|
1057 |
-
|
1058 |
-
|
1059 |
-
|
1060 |
-
|
1061 |
-
#
|
1062 |
-
|
1063 |
-
del st.session_state.current_model
|
1064 |
-
if "current_question" in st.session_state:
|
1065 |
-
del st.session_state.current_question
|
1066 |
-
|
1067 |
-
st.rerun()
|
1068 |
|
1069 |
-
|
1070 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1071 |
|
1072 |
-
|
1073 |
-
|
1074 |
-
|
|
|
1075 |
|
1076 |
-
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
<p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Records:</strong> 100,000+ measurements</p>
|
1084 |
-
</div>
|
1085 |
-
""", unsafe_allow_html=True)
|
|
|
36 |
initial_sidebar_state="expanded"
|
37 |
)
|
38 |
|
39 |
+
# JavaScript for interactions
|
40 |
+
# st.markdown("""
|
41 |
+
# <script>
|
42 |
+
# function scrollToBottom() {
|
43 |
+
# setTimeout(function() {
|
44 |
+
# const mainContainer = document.querySelector('.main-container');
|
45 |
+
# if (mainContainer) {
|
46 |
+
# mainContainer.scrollTop = mainContainer.scrollHeight;
|
47 |
+
# }
|
48 |
+
# window.scrollTo(0, document.body.scrollHeight);
|
49 |
+
# }, 100);
|
50 |
+
# }
|
51 |
|
52 |
+
# function toggleCode(header) {
|
53 |
+
# const codeBlock = header.nextElementSibling;
|
54 |
+
# const toggleText = header.querySelector('.toggle-text');
|
55 |
+
|
56 |
+
# if (codeBlock.style.display === 'none') {
|
57 |
+
# codeBlock.style.display = 'block';
|
58 |
+
# toggleText.textContent = 'Click to collapse';
|
59 |
+
# } else {
|
60 |
+
# codeBlock.style.display = 'none';
|
61 |
+
# toggleText.textContent = 'Click to expand';
|
62 |
+
# }
|
63 |
+
# }
|
64 |
+
# </script>
|
65 |
+
# """, unsafe_allow_html=True)
|
66 |
|
67 |
+
# FORCE reload environment variables
|
68 |
+
load_dotenv(override=True)
|
|
|
|
|
69 |
|
70 |
+
# Get API keys
|
71 |
+
Groq_Token = os.getenv("GROQ_API_KEY")
|
72 |
+
hf_token = os.getenv("HF_TOKEN")
|
73 |
+
gemini_token = os.getenv("GEMINI_TOKEN")
|
74 |
|
75 |
+
# Model order is decided by this
|
76 |
+
models = {
|
77 |
+
"gpt-oss-120b": "openai/gpt-oss-120b",
|
78 |
+
"qwen3-32b": "qwen/qwen3-32b",
|
79 |
+
"gpt-oss-20b": "openai/gpt-oss-20b",
|
80 |
+
"llama4 maverik":"meta-llama/llama-4-maverick-17b-128e-instruct",
|
81 |
+
"llama3.3": "llama-3.3-70b-versatile",
|
82 |
+
"deepseek-R1": "deepseek-r1-distill-llama-70b",
|
83 |
+
"gemini-2.5-flash": "gemini-2.5-flash",
|
84 |
+
"gemini-2.5-pro": "gemini-2.5-pro",
|
85 |
+
"gemini-2.5-flash-lite": "gemini-2.5-flash-lite",
|
86 |
+
"gemini-2.0-flash": "gemini-2.0-flash",
|
87 |
+
"gemini-2.0-flash-lite": "gemini-2.0-flash-lite",
|
88 |
+
# "llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct"
|
89 |
+
# "llama3.1": "llama-3.1-8b-instant"
|
90 |
}
|
91 |
|
92 |
+
self_path = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Initialize session ID for this session
|
95 |
+
if "session_id" not in st.session_state:
|
96 |
+
st.session_state.session_id = str(uuid.uuid4())
|
97 |
|
98 |
+
def upload_feedback(feedback, error, output, last_prompt, code, status):
|
99 |
+
"""Enhanced feedback upload function with better logging and error handling"""
|
100 |
+
try:
|
101 |
+
if not hf_token or hf_token.strip() == "":
|
102 |
+
st.warning("Cannot upload feedback - HF_TOKEN not available")
|
103 |
+
return False
|
104 |
|
105 |
+
# Create comprehensive feedback data
|
106 |
+
feedback_data = {
|
107 |
+
"timestamp": datetime.now().isoformat(),
|
108 |
+
"session_id": st.session_state.session_id,
|
109 |
+
"feedback_score": feedback.get("score", ""),
|
110 |
+
"feedback_comment": feedback.get("text", ""),
|
111 |
+
"user_prompt": last_prompt,
|
112 |
+
"ai_output": str(output),
|
113 |
+
"generated_code": code or "",
|
114 |
+
"error_message": error or "",
|
115 |
+
"is_image_output": status.get("is_image", False),
|
116 |
+
"success": not bool(error)
|
117 |
+
}
|
118 |
|
119 |
+
# Create unique folder name with timestamp
|
120 |
+
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
|
121 |
+
random_id = str(uuid.uuid4())[:8]
|
122 |
+
folder_name = f"feedback_{timestamp_str}_{random_id}"
|
123 |
+
|
124 |
+
# Create markdown feedback file
|
125 |
+
markdown_content = f"""# VayuChat Feedback Report
|
126 |
|
127 |
+
## Session Information
|
128 |
+
- **Timestamp**: {feedback_data['timestamp']}
|
129 |
+
- **Session ID**: {feedback_data['session_id']}
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
## User Interaction
|
132 |
+
**Prompt**: {feedback_data['user_prompt']}
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
## AI Response
|
135 |
+
**Output**: {feedback_data['ai_output']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
## Generated Code
|
138 |
+
```python
|
139 |
+
{feedback_data['generated_code']}
|
140 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
## Technical Details
|
143 |
+
- **Error Message**: {feedback_data['error_message']}
|
144 |
+
- **Is Image Output**: {feedback_data['is_image_output']}
|
145 |
+
- **Success**: {feedback_data['success']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
## User Feedback
|
148 |
+
- **Score**: {feedback_data['feedback_score']}
|
149 |
+
- **Comments**: {feedback_data['feedback_comment']}
|
150 |
+
"""
|
151 |
|
152 |
+
# Save markdown file locally
|
153 |
+
markdown_filename = f"{folder_name}.md"
|
154 |
+
markdown_local_path = f"/tmp/{markdown_filename}"
|
155 |
+
|
156 |
+
with open(markdown_local_path, "w", encoding="utf-8") as f:
|
157 |
+
f.write(markdown_content)
|
|
|
|
|
158 |
|
159 |
+
# Upload to Hugging Face
|
160 |
+
api = HfApi(token=hf_token)
|
161 |
+
|
162 |
+
# Upload markdown feedback
|
163 |
+
api.upload_file(
|
164 |
+
path_or_fileobj=markdown_local_path,
|
165 |
+
path_in_repo=f"data/{markdown_filename}",
|
166 |
+
repo_id="SustainabilityLabIITGN/VayuChat_Feedback",
|
167 |
+
repo_type="dataset",
|
168 |
+
)
|
169 |
+
|
170 |
+
# Upload image if it exists and is an image output
|
171 |
+
if status.get("is_image", False) and isinstance(output, str) and os.path.exists(output):
|
172 |
+
try:
|
173 |
+
image_filename = f"{folder_name}_plot.png"
|
174 |
+
api.upload_file(
|
175 |
+
path_or_fileobj=output,
|
176 |
+
path_in_repo=f"data/{image_filename}",
|
177 |
+
repo_id="SustainabilityLabIITGN/VayuChat_Feedback",
|
178 |
+
repo_type="dataset",
|
179 |
+
)
|
180 |
+
except Exception as img_error:
|
181 |
+
print(f"Error uploading image: {img_error}")
|
182 |
+
|
183 |
+
# Clean up local files
|
184 |
+
if os.path.exists(markdown_local_path):
|
185 |
+
os.remove(markdown_local_path)
|
186 |
+
|
187 |
+
st.success("Feedback uploaded successfully!")
|
188 |
+
return True
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
st.error(f"Error uploading feedback: {e}")
|
192 |
+
print(f"Feedback upload error: {e}")
|
193 |
+
return False
|
194 |
|
195 |
+
# Filter available models
|
196 |
+
available_models = []
|
197 |
+
model_names = list(models.keys())
|
198 |
+
groq_models = []
|
199 |
+
gemini_models = []
|
200 |
+
for model_name in model_names:
|
201 |
+
if "gemini" not in model_name:
|
202 |
+
groq_models.append(model_name)
|
203 |
+
else:
|
204 |
+
gemini_models.append(model_name)
|
205 |
+
if Groq_Token and Groq_Token.strip():
|
206 |
+
available_models.extend(groq_models)
|
207 |
+
if gemini_token and gemini_token.strip():
|
208 |
+
available_models.extend(gemini_models)
|
209 |
|
210 |
+
if not available_models:
|
211 |
+
st.error("No API keys available! Please set up your API keys in the .env file")
|
212 |
+
st.stop()
|
|
|
|
|
213 |
|
214 |
+
# Set GPT-OSS-120B as default if available
|
215 |
+
default_index = 0
|
216 |
+
if "gpt-oss-120b" in available_models:
|
217 |
+
default_index = available_models.index("gpt-oss-120b")
|
218 |
+
elif "deepseek-R1" in available_models:
|
219 |
+
default_index = available_models.index("deepseek-R1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
+
# Compact header - everything perfectly aligned at same height
|
222 |
+
st.markdown("""
|
223 |
+
<style>
|
224 |
+
.header-container {
|
225 |
+
display: flex;
|
226 |
+
align-items: center;
|
227 |
+
justify-content: center;
|
228 |
+
gap: 12px;
|
229 |
+
border-bottom: 1px solid #e5e7eb;
|
230 |
}
|
231 |
|
232 |
+
.header-container img {
|
233 |
+
height: 80px;
|
|
|
|
|
|
|
|
|
|
|
234 |
}
|
235 |
|
236 |
+
.header-container h1 {
|
237 |
+
padding: 0.25rem 0;
|
238 |
+
margin: 0;
|
239 |
+
font-size: 1.5rem;
|
240 |
+
font-weight: 700;
|
241 |
+
color: #2563eb;
|
|
|
242 |
}
|
243 |
|
244 |
+
/* 🔹 Responsive: On small screens stack vertically */
|
245 |
+
@media (max-width: 768px) {
|
246 |
+
.header-container {
|
247 |
+
flex-direction: column;
|
248 |
+
text-align: center;
|
249 |
+
gap: 0;
|
250 |
+
padding: 0 0 0.40rem;
|
251 |
+
}
|
252 |
+
.header-container img {
|
253 |
+
height: 60px;
|
254 |
+
}
|
255 |
+
.header-container h1 {
|
256 |
+
padding: 0 0;
|
257 |
+
font-size: 1.25rem;
|
258 |
+
}
|
259 |
}
|
260 |
+
</style>
|
261 |
+
<div class="header-container">
|
262 |
+
<img src="https://sustainability-lab.github.io/images/logo_light.svg" />
|
263 |
+
<div style="display: flex; flex-direction: column; line-height: 1.2;">
|
264 |
+
<h1>VayuChat</h1>
|
265 |
+
<span>AI Air Quality Analysis • Sustainability Lab, IIT Gandhinagar</span>
|
266 |
+
</div>
|
267 |
+
</div>
|
268 |
+
""", unsafe_allow_html=True)
|
269 |
|
270 |
+
# Load data with caching for better performance
|
271 |
+
@st.cache_data
|
272 |
+
def load_data():
|
273 |
+
return preprocess_and_load_df(join(self_path, "Data.csv"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
+
try:
|
276 |
+
df = load_data()
|
277 |
+
# Data loaded silently - no success message needed
|
278 |
+
except Exception as e:
|
279 |
+
st.error(f"Error loading data: {e}")
|
280 |
+
st.stop()
|
281 |
|
282 |
+
inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
283 |
+
image_path = "IITGN_Logo.png"
|
|
|
|
|
|
|
284 |
|
285 |
+
# Clean sidebar
|
286 |
+
with st.sidebar:
|
287 |
+
# Model selector at top of sidebar for easy access
|
288 |
+
model_name = st.selectbox(
|
289 |
+
"🤖 AI Model:",
|
290 |
+
available_models,
|
291 |
+
index=default_index,
|
292 |
+
help="Choose your AI model - easily accessible without scrolling!"
|
293 |
+
)
|
294 |
+
|
295 |
+
st.markdown("---")
|
296 |
+
|
297 |
+
# Quick Queries Section
|
298 |
+
st.markdown("### 💭 Quick Queries")
|
299 |
+
|
300 |
+
# Load quick prompts with caching
|
301 |
+
@st.cache_data
|
302 |
+
def load_questions():
|
303 |
+
questions = []
|
304 |
+
questions_file = join(self_path, "questions.txt")
|
305 |
+
if os.path.exists(questions_file):
|
306 |
+
try:
|
307 |
+
with open(questions_file, 'r', encoding='utf-8') as f:
|
308 |
+
content = f.read()
|
309 |
+
questions = [q.strip() for q in content.split("\n") if q.strip()]
|
310 |
+
except Exception as e:
|
311 |
+
questions = []
|
312 |
+
return questions
|
313 |
+
|
314 |
+
questions = load_questions()
|
315 |
+
|
316 |
+
# Add default prompts if file doesn't exist or is empty
|
317 |
+
if not questions:
|
318 |
+
questions = [
|
319 |
+
"Which month had highest pollution?",
|
320 |
+
"Which city has worst air quality?",
|
321 |
+
"Show annual PM2.5 average",
|
322 |
+
"Plot monthly average PM2.5 for 2023",
|
323 |
+
"List all cities by pollution level",
|
324 |
+
"Compare winter vs summer pollution",
|
325 |
+
"Show seasonal pollution patterns",
|
326 |
+
"Which areas exceed WHO guidelines?",
|
327 |
+
"What are peak pollution hours?",
|
328 |
+
"Show PM10 vs PM2.5 comparison",
|
329 |
+
"Which station records highest variability in PM2.5?",
|
330 |
+
"Calculate pollution improvement rate year-over-year by city",
|
331 |
+
"Identify cities with PM2.5 levels consistently above 50 μg/m³ for >6 months",
|
332 |
+
"Find correlation between PM2.5 and PM10 across different seasons and cities",
|
333 |
+
"Compare weekday vs weekend levels",
|
334 |
+
"Plot yearly trend analysis",
|
335 |
+
"Show pollution distribution by city",
|
336 |
+
"Create correlation plot between pollutants"
|
337 |
+
]
|
338 |
+
|
339 |
+
# Quick query buttons in sidebar
|
340 |
+
selected_prompt = None
|
341 |
+
|
342 |
+
|
343 |
+
# Show all questions but in a scrollable format
|
344 |
+
if len(questions) > 0:
|
345 |
+
st.markdown("**Select a question to analyze:**")
|
346 |
+
|
347 |
+
# Getting Started section with simple questions
|
348 |
+
getting_started_questions = questions[:10] # First 10 simple questions
|
349 |
+
with st.expander("🚀 Getting Started - Simple Questions", expanded=True):
|
350 |
+
for i, q in enumerate(getting_started_questions):
|
351 |
+
if st.button(q, key=f"start_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
352 |
+
selected_prompt = q
|
353 |
+
st.session_state.last_selected_prompt = q
|
354 |
+
|
355 |
+
# Create expandable sections for better organization
|
356 |
+
with st.expander("📊 NCAP Funding & Policy Analysis", expanded=False):
|
357 |
+
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['ncap', 'funding', 'investment', 'rupee'])]):
|
358 |
+
if st.button(q, key=f"ncap_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
359 |
+
selected_prompt = q
|
360 |
+
st.session_state.last_selected_prompt = q
|
361 |
+
|
362 |
+
with st.expander("🌬️ Meteorology & Environmental Factors", expanded=False):
|
363 |
+
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['wind', 'temperature', 'humidity', 'rainfall', 'meteorological', 'monsoon', 'barometric'])]):
|
364 |
+
if st.button(q, key=f"met_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
365 |
+
selected_prompt = q
|
366 |
+
st.session_state.last_selected_prompt = q
|
367 |
+
|
368 |
+
with st.expander("👥 Population & Demographics", expanded=False):
|
369 |
+
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['population', 'capita', 'density', 'exposure'])]):
|
370 |
+
if st.button(q, key=f"pop_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
371 |
+
selected_prompt = q
|
372 |
+
st.session_state.last_selected_prompt = q
|
373 |
+
|
374 |
+
with st.expander("🏭 Multi-Pollutant Analysis", expanded=False):
|
375 |
+
for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['ozone', 'no2', 'correlation', 'multi-pollutant', 'interaction'])]):
|
376 |
+
if st.button(q, key=f"multi_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
377 |
+
selected_prompt = q
|
378 |
+
st.session_state.last_selected_prompt = q
|
379 |
+
|
380 |
+
with st.expander("📈 Other Analysis Questions", expanded=False):
|
381 |
+
remaining_questions = [q for q in questions if not any(any(word in q.lower() for word in category) for category in [
|
382 |
+
['ncap', 'funding', 'investment', 'rupee'],
|
383 |
+
['wind', 'temperature', 'humidity', 'rainfall', 'meteorological', 'monsoon', 'barometric'],
|
384 |
+
['population', 'capita', 'density', 'exposure'],
|
385 |
+
['ozone', 'no2', 'correlation', 'multi-pollutant', 'interaction']
|
386 |
+
])]
|
387 |
+
for i, q in enumerate(remaining_questions):
|
388 |
+
if st.button(q, key=f"other_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
|
389 |
+
selected_prompt = q
|
390 |
+
st.session_state.last_selected_prompt = q
|
391 |
+
|
392 |
+
st.markdown("---")
|
393 |
+
|
394 |
+
|
395 |
+
# Clear Chat Button
|
396 |
+
if st.button("Clear Chat", use_container_width=True):
|
397 |
+
st.session_state.responses = []
|
398 |
+
st.session_state.processing = False
|
399 |
+
st.session_state.session_id = str(uuid.uuid4())
|
400 |
+
try:
|
401 |
+
st.rerun()
|
402 |
+
except AttributeError:
|
403 |
+
st.experimental_rerun()
|
404 |
|
405 |
+
# Initialize session state first
|
406 |
+
if "responses" not in st.session_state:
|
407 |
+
st.session_state.responses = []
|
408 |
+
if "processing" not in st.session_state:
|
409 |
+
st.session_state.processing = False
|
410 |
+
if "session_id" not in st.session_state:
|
411 |
+
st.session_state.session_id = str(uuid.uuid4())
|
412 |
|
|
|
|
|
|
|
413 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
|
|
|
|
|
|
|
|
|
415 |
|
416 |
+
def show_custom_response(response):
|
417 |
+
"""Custom response display function with improved styling"""
|
418 |
+
role = response.get("role", "assistant")
|
419 |
+
content = response.get("content", "")
|
420 |
+
|
421 |
+
if role == "user":
|
422 |
+
# User message with right alignment - reduced margins
|
423 |
+
st.markdown(f"""
|
424 |
+
<div style='display: flex; justify-content: flex-end; margin: 1rem 0;'>
|
425 |
+
<div class='user-message'>
|
426 |
+
{content}
|
427 |
+
</div>
|
428 |
+
</div>
|
429 |
+
""", unsafe_allow_html=True)
|
430 |
+
elif role == "assistant":
|
431 |
+
# Check if content is an image filename - don't display the filename text
|
432 |
+
is_image_path = isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg', '.jpeg'])
|
433 |
+
|
434 |
+
# Check if content is a pandas DataFrame
|
435 |
+
import pandas as pd
|
436 |
+
is_dataframe = isinstance(content, pd.DataFrame)
|
437 |
+
|
438 |
+
# Check for errors first and display them with special styling
|
439 |
+
error = response.get("error")
|
440 |
+
timestamp = response.get("timestamp", "")
|
441 |
+
timestamp_display = f" • {timestamp}" if timestamp else ""
|
442 |
+
|
443 |
+
if error:
|
444 |
+
st.markdown(f"""
|
445 |
+
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
446 |
+
<div class='assistant-message'>
|
447 |
+
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
448 |
+
<div class='error-message'>
|
449 |
+
⚠️ <strong>Error:</strong> {error}
|
450 |
+
<br><br>
|
451 |
+
<em>💡 Try rephrasing your question or being more specific about what you'd like to analyze.</em>
|
452 |
+
</div>
|
453 |
+
</div>
|
454 |
+
</div>
|
455 |
+
""", unsafe_allow_html=True)
|
456 |
+
# Assistant message with left alignment - reduced margins
|
457 |
+
elif not is_image_path and not is_dataframe:
|
458 |
+
st.markdown(f"""
|
459 |
+
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
460 |
+
<div class='assistant-message'>
|
461 |
+
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
462 |
+
{content if isinstance(content, str) else str(content)}
|
463 |
+
</div>
|
464 |
+
</div>
|
465 |
+
""", unsafe_allow_html=True)
|
466 |
+
elif is_dataframe:
|
467 |
+
# Display DataFrame with nice formatting
|
468 |
+
st.markdown(f"""
|
469 |
+
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
|
470 |
+
<div class='assistant-message'>
|
471 |
+
<div class='assistant-info'>VayuChat{timestamp_display}</div>
|
472 |
+
Here are the results:
|
473 |
+
</div>
|
474 |
+
</div>
|
475 |
+
""", unsafe_allow_html=True)
|
476 |
+
|
477 |
+
# Add context info for dataframes
|
478 |
+
st.markdown("""
|
479 |
+
<div class='context-info'>
|
480 |
+
💡 This table is interactive - click column headers to sort, or scroll to view all data.
|
481 |
+
</div>
|
482 |
+
""", unsafe_allow_html=True)
|
483 |
+
|
484 |
+
st.dataframe(content, use_container_width=True)
|
485 |
+
|
486 |
+
# Show generated code with Streamlit expander
|
487 |
+
if response.get("gen_code"):
|
488 |
+
with st.expander("📋 View Generated Code", expanded=False):
|
489 |
+
st.code(response["gen_code"], language="python")
|
490 |
+
|
491 |
+
# Try to display image if content is a file path
|
492 |
+
try:
|
493 |
+
if isinstance(content, str) and (content.endswith('.png') or content.endswith('.jpg')):
|
494 |
+
if os.path.exists(content):
|
495 |
+
# Display image without showing filename
|
496 |
+
st.image(content, width=800)
|
497 |
+
return {"is_image": True}
|
498 |
+
# Also handle case where content shows filename but we want to show image
|
499 |
+
elif isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg']):
|
500 |
+
# Extract potential filename from content
|
501 |
+
import re
|
502 |
+
filename_match = re.search(r'([^/\\]+\.(?:png|jpg|jpeg))', content)
|
503 |
+
if filename_match:
|
504 |
+
filename = filename_match.group(1)
|
505 |
+
if os.path.exists(filename):
|
506 |
+
st.image(filename, width=800)
|
507 |
+
return {"is_image": True}
|
508 |
+
except:
|
509 |
+
pass
|
510 |
+
|
511 |
+
return {"is_image": False}
|
512 |
|
|
|
|
|
|
|
513 |
|
514 |
+
# Chat history
|
515 |
+
# Display chat history
|
516 |
+
for response_id, response in enumerate(st.session_state.responses):
|
517 |
+
status = show_custom_response(response)
|
518 |
+
|
519 |
+
# Show feedback section for assistant responses
|
520 |
+
if response["role"] == "assistant":
|
521 |
+
feedback_key = f"feedback_{int(response_id/2)}"
|
522 |
+
error = response.get("error", "")
|
523 |
+
output = response.get("content", "")
|
524 |
+
last_prompt = response.get("last_prompt", "")
|
525 |
+
code = response.get("gen_code", "")
|
526 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
527 |
|
528 |
+
# Beautiful action bar with feedback and retry
|
529 |
+
st.markdown('<div style="margin: 1.5rem 0 0.5rem 0;"></div>', unsafe_allow_html=True) # Spacer
|
530 |
+
|
531 |
+
if "feedback" in st.session_state.responses[response_id]:
|
532 |
+
# Show submitted feedback nicely
|
533 |
+
feedback_data = st.session_state.responses[response_id]["feedback"]
|
534 |
+
col1, col2 = st.columns([3, 1])
|
535 |
+
with col1:
|
536 |
+
st.markdown(f"""
|
537 |
+
<div style='
|
538 |
+
background: linear-gradient(135deg, #ecfdf5 0%, #d1fae5 100%);
|
539 |
+
border: 1px solid #a7f3d0;
|
540 |
+
border-radius: 8px;
|
541 |
+
padding: 0.75rem 1rem;
|
542 |
+
display: flex;
|
543 |
+
align-items: center;
|
544 |
+
gap: 8px;
|
545 |
+
'>
|
546 |
+
<span style='font-size: 1.1rem;'>{feedback_data.get('score', '')}</span>
|
547 |
+
<span style='color: #059669; font-weight: 500; font-size: 0.9rem;'>
|
548 |
+
Thanks for your feedback!
|
549 |
+
</span>
|
550 |
+
</div>
|
551 |
+
""", unsafe_allow_html=True)
|
552 |
+
with col2:
|
553 |
+
if st.button("🔄 Retry", key=f"retry_{response_id}", use_container_width=True):
|
554 |
+
user_prompt = ""
|
555 |
+
if response_id > 0:
|
556 |
+
user_prompt = st.session_state.responses[response_id-1].get("content", "")
|
557 |
+
if user_prompt:
|
558 |
+
if response_id > 0:
|
559 |
+
retry_prompt = st.session_state.responses[response_id-1].get("content", "")
|
560 |
+
del st.session_state.responses[response_id]
|
561 |
+
del st.session_state.responses[response_id-1]
|
562 |
+
st.session_state.follow_up_prompt = retry_prompt
|
563 |
+
st.rerun()
|
564 |
+
else:
|
565 |
+
# Clean feedback and retry layout
|
566 |
+
col1, col2, col3, col4 = st.columns([2, 2, 1, 1])
|
567 |
+
|
568 |
+
with col1:
|
569 |
+
if st.button("✨ Excellent", key=f"{feedback_key}_excellent", use_container_width=True):
|
570 |
+
feedback = {"score": "✨ Excellent", "text": ""}
|
571 |
+
st.session_state.responses[response_id]["feedback"] = feedback
|
572 |
+
st.rerun()
|
573 |
+
|
574 |
+
with col2:
|
575 |
+
if st.button("🔧 Needs work", key=f"{feedback_key}_poor", use_container_width=True):
|
576 |
+
feedback = {"score": "🔧 Needs work", "text": ""}
|
577 |
+
st.session_state.responses[response_id]["feedback"] = feedback
|
578 |
+
st.rerun()
|
579 |
+
|
580 |
+
with col4:
|
581 |
+
if st.button("🔄 Retry", key=f"retry_{response_id}", use_container_width=True):
|
582 |
+
user_prompt = ""
|
583 |
+
if response_id > 0:
|
584 |
+
user_prompt = st.session_state.responses[response_id-1].get("content", "")
|
585 |
+
if user_prompt:
|
586 |
+
if response_id > 0:
|
587 |
+
retry_prompt = st.session_state.responses[response_id-1].get("content", "")
|
588 |
+
del st.session_state.responses[response_id]
|
589 |
+
del st.session_state.responses[response_id-1]
|
590 |
+
st.session_state.follow_up_prompt = retry_prompt
|
591 |
+
st.rerun()
|
592 |
|
593 |
+
# Chat input with better guidance
|
594 |
+
prompt = st.chat_input("💬 Ask about air quality trends, pollution analysis, or city comparisons...", key="main_chat")
|
|
|
595 |
|
596 |
+
# Handle selected prompt from quick prompts
|
597 |
+
if selected_prompt:
|
598 |
+
prompt = selected_prompt
|
|
|
|
|
|
|
|
|
|
|
599 |
|
600 |
+
# Handle follow-up prompts from quick action buttons
|
601 |
+
if st.session_state.get("follow_up_prompt") and not st.session_state.get("processing"):
|
602 |
+
prompt = st.session_state.follow_up_prompt
|
603 |
+
st.session_state.follow_up_prompt = None # Clear the follow-up prompt
|
604 |
|
605 |
+
# Handle new queries
|
606 |
+
if prompt and not st.session_state.get("processing"):
|
607 |
+
# Prevent duplicate processing
|
608 |
+
if "last_prompt" in st.session_state:
|
609 |
+
last_prompt = st.session_state["last_prompt"]
|
610 |
+
last_model_name = st.session_state.get("last_model_name", "")
|
611 |
+
if (prompt == last_prompt) and (model_name == last_model_name):
|
612 |
+
prompt = None
|
613 |
|
614 |
+
if prompt:
|
615 |
+
# Add user input to chat history
|
616 |
+
user_response = get_from_user(prompt)
|
617 |
+
st.session_state.responses.append(user_response)
|
618 |
+
|
619 |
+
# Set processing state
|
620 |
+
st.session_state.processing = True
|
621 |
+
st.session_state.current_model = model_name
|
622 |
+
st.session_state.current_question = prompt
|
623 |
+
|
624 |
+
# Rerun to show processing indicator
|
625 |
+
st.rerun()
|
626 |
|
627 |
+
# Process the question if we're in processing state
|
628 |
+
if st.session_state.get("processing"):
|
629 |
+
# Enhanced processing indicator like Claude Code
|
630 |
+
st.markdown("""
|
631 |
+
<div style='padding: 1rem; text-align: center; background: #f8fafc; border-radius: 8px; margin: 1rem 0;'>
|
632 |
+
<div style='display: flex; align-items: center; justify-content: center; gap: 0.5rem; color: #475569;'>
|
633 |
+
<div style='font-weight: 500;'>🤖 Processing with """ + str(st.session_state.get('current_model', 'Unknown')) + """</div>
|
634 |
+
<div class='dots' style='display: inline-flex; gap: 2px;'>
|
635 |
+
<div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out;'></div>
|
636 |
+
<div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out; animation-delay: 0.16s;'></div>
|
637 |
+
<div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out; animation-delay: 0.32s;'></div>
|
638 |
+
</div>
|
639 |
+
</div>
|
640 |
+
<div style='font-size: 0.75rem; color: #6b7280; margin-top: 0.25rem;'>Analyzing data and generating response...</div>
|
641 |
+
</div>
|
642 |
+
<style>
|
643 |
+
@keyframes bounce {
|
644 |
+
0%, 80%, 100% { transform: scale(0.8); opacity: 0.5; }
|
645 |
+
40% { transform: scale(1.2); opacity: 1; }
|
646 |
+
}
|
647 |
+
</style>
|
648 |
+
""", unsafe_allow_html=True)
|
649 |
+
|
650 |
+
prompt = st.session_state.get("current_question")
|
651 |
+
model_name = st.session_state.get("current_model")
|
652 |
+
|
653 |
+
try:
|
654 |
+
response = ask_question(model_name=model_name, question=prompt)
|
655 |
+
|
656 |
+
if not isinstance(response, dict):
|
657 |
+
response = {
|
658 |
+
"role": "assistant",
|
659 |
+
"content": "Error: Invalid response format",
|
660 |
+
"gen_code": "",
|
661 |
+
"ex_code": "",
|
662 |
+
"last_prompt": prompt,
|
663 |
+
"error": "Invalid response format",
|
664 |
+
"timestamp": datetime.now().strftime("%H:%M")
|
665 |
+
}
|
666 |
+
|
667 |
+
response.setdefault("role", "assistant")
|
668 |
+
response.setdefault("content", "No content generated")
|
669 |
+
response.setdefault("gen_code", "")
|
670 |
+
response.setdefault("ex_code", "")
|
671 |
+
response.setdefault("last_prompt", prompt)
|
672 |
+
response.setdefault("error", None)
|
673 |
+
response.setdefault("timestamp", datetime.now().strftime("%H:%M"))
|
674 |
+
|
675 |
+
except Exception as e:
|
676 |
+
response = {
|
677 |
+
"role": "assistant",
|
678 |
+
"content": f"Sorry, I encountered an error: {str(e)}",
|
679 |
+
"gen_code": "",
|
680 |
+
"ex_code": "",
|
681 |
+
"last_prompt": prompt,
|
682 |
+
"error": str(e),
|
683 |
+
"timestamp": datetime.now().strftime("%H:%M")
|
684 |
+
}
|
685 |
+
|
686 |
+
st.session_state.responses.append(response)
|
687 |
+
st.session_state["last_prompt"] = prompt
|
688 |
+
st.session_state["last_model_name"] = model_name
|
689 |
+
st.session_state.processing = False
|
690 |
+
|
691 |
+
# Clear processing state
|
692 |
+
if "current_model" in st.session_state:
|
693 |
+
del st.session_state.current_model
|
694 |
+
if "current_question" in st.session_state:
|
695 |
+
del st.session_state.current_question
|
696 |
+
|
697 |
+
st.rerun()
|
698 |
+
|
699 |
+
# Close chat container
|
700 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
701 |
+
|
702 |
+
# Minimal auto-scroll - only scroll when processing
|
703 |
+
if st.session_state.get("processing"):
|
704 |
+
st.markdown("<script>scrollToBottom();</script>", unsafe_allow_html=True)
|
705 |
+
|
706 |
+
# Dataset Info Section (matching mockup)
|
707 |
+
st.markdown("### Dataset Info")
|
708 |
+
st.markdown("""
|
709 |
+
<div style='background: #f1f5f9; border-radius: 8px; padding: 1rem; margin-bottom: 1rem;'>
|
710 |
+
<h4 style='margin: 0 0 0.5rem 0; color: #1e293b; font-size: 0.9rem;'>PM2.5 Air Quality Data</h4>
|
711 |
+
<p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Time Range:</strong> 2022 - 2023</p>
|
712 |
+
<p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Locations:</strong> 300+ cities across India</p>
|
713 |
+
<p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Records:</strong> 100,000+ measurements</p>
|
714 |
+
</div>
|
715 |
+
""", unsafe_allow_html=True)
|
716 |
+
|
717 |
+
|
718 |
+
# streamlit adds each markdown's div, so its better to keep this in the last
|
719 |
+
# Custom CSS for beautiful styling
|
720 |
+
st.markdown("""
|
721 |
+
<style>
|
722 |
+
/* Clean app background */
|
723 |
+
.stApp {
|
724 |
+
background-color: #ffffff;
|
725 |
+
color: #212529;
|
726 |
+
font-family: 'Segoe UI', sans-serif;
|
727 |
}
|
728 |
|
729 |
+
/* Reduce main container padding */
|
730 |
+
.main .block-container {
|
731 |
+
padding-top: 0px;
|
732 |
+
padding-bottom: 3rem;
|
733 |
+
max-width: 100%;
|
734 |
}
|
735 |
|
736 |
+
/* Remove excessive spacing */
|
737 |
+
.element-container {
|
738 |
+
margin-bottom: 0.5rem !important;
|
|
|
|
|
|
|
739 |
}
|
740 |
|
741 |
+
/* Fix sidebar spacing */
|
742 |
+
[data-testid="stSidebar"] .element-container {
|
743 |
+
margin-bottom: 0.25rem !important;
|
|
|
|
|
|
|
|
|
744 |
}
|
745 |
|
746 |
+
/* Sidebar */
|
747 |
+
[data-testid="stSidebar"] {
|
748 |
+
background-color: #f8f9fa;
|
749 |
+
border-right: 1px solid #dee2e6;
|
750 |
+
padding: 1rem;
|
751 |
+
}
|
752 |
|
753 |
+
/* Optimize sidebar scrolling */
|
754 |
+
[data-testid="stSidebar"] > div:first-child {
|
755 |
+
height: 100vh;
|
756 |
overflow-y: auto;
|
757 |
+
padding-bottom: 2rem;
|
758 |
}
|
|
|
|
|
759 |
|
760 |
+
[data-testid="stSidebar"]::-webkit-scrollbar {
|
761 |
+
width: 6px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
762 |
}
|
763 |
|
764 |
+
[data-testid="stSidebar"]::-webkit-scrollbar-track {
|
765 |
+
background: #f1f1f1;
|
766 |
+
border-radius: 3px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
767 |
}
|
|
|
|
|
768 |
|
769 |
+
[data-testid="stSidebar"]::-webkit-scrollbar-thumb {
|
770 |
+
background: #c1c1c1;
|
771 |
+
border-radius: 3px;
|
772 |
+
}
|
773 |
|
774 |
+
[data-testid="stSidebar"]::-webkit-scrollbar-thumb:hover {
|
775 |
+
background: #a1a1a1;
|
776 |
+
}
|
|
|
777 |
|
778 |
+
/* Main title */
|
779 |
+
.main-title {
|
780 |
+
text-align: center;
|
781 |
+
color: #343a40;
|
782 |
+
font-size: 2.5rem;
|
783 |
+
font-weight: 700;
|
784 |
+
margin-bottom: 0.5rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
785 |
}
|
786 |
|
787 |
+
/* Subtitle */
|
788 |
+
.subtitle {
|
789 |
+
text-align: center;
|
790 |
+
color: #6c757d;
|
791 |
+
font-size: 1.1rem;
|
792 |
+
margin-bottom: 1.5rem;
|
793 |
+
}
|
794 |
|
795 |
+
/* Instructions */
|
796 |
+
.instructions {
|
797 |
+
background-color: #f1f3f5;
|
798 |
+
border-left: 4px solid #0d6efd;
|
799 |
+
padding: 1rem;
|
800 |
+
margin-bottom: 1.5rem;
|
801 |
+
border-radius: 6px;
|
802 |
+
color: #495057;
|
803 |
+
text-align: left;
|
804 |
+
}
|
805 |
|
806 |
+
/* Quick prompt buttons */
|
807 |
+
.quick-prompt-container {
|
808 |
+
display: flex;
|
809 |
+
flex-wrap: wrap;
|
810 |
+
gap: 8px;
|
811 |
+
margin-bottom: 1.5rem;
|
812 |
+
padding: 1rem;
|
813 |
+
background-color: #f8f9fa;
|
814 |
+
border-radius: 10px;
|
815 |
+
border: 1px solid #dee2e6;
|
816 |
+
}
|
817 |
|
818 |
+
.quick-prompt-btn {
|
819 |
+
background-color: #0d6efd;
|
820 |
+
color: white;
|
821 |
+
border: none;
|
822 |
+
padding: 8px 16px;
|
823 |
+
border-radius: 20px;
|
824 |
+
font-size: 0.9rem;
|
825 |
+
cursor: pointer;
|
826 |
+
transition: all 0.2s ease;
|
827 |
+
white-space: nowrap;
|
828 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
829 |
|
830 |
+
.quick-prompt-btn:hover {
|
831 |
+
background-color: #0b5ed7;
|
832 |
+
transform: translateY(-2px);
|
833 |
+
}
|
834 |
|
835 |
+
/* User message styling */
|
836 |
+
.user-message {
|
837 |
+
background: #3b82f6;
|
838 |
+
color: white;
|
839 |
+
padding: 0.75rem 1rem;
|
840 |
+
border-radius: 7px;
|
841 |
+
max-width: 95%;
|
842 |
+
}
|
843 |
|
844 |
+
.user-info {
|
845 |
+
font-size: 0.875rem;
|
846 |
+
opacity: 0.9;
|
847 |
+
margin-bottom: 3px;
|
848 |
+
}
|
849 |
|
850 |
+
/* Assistant message styling */
|
851 |
+
.assistant-message {
|
852 |
+
background: #f1f5f9;
|
853 |
+
color: #334155;
|
854 |
+
padding: 0.75rem 1rem;
|
855 |
+
border-radius: 12px;
|
856 |
+
max-width: 85%;
|
857 |
+
}
|
858 |
|
859 |
+
.assistant-info {
|
860 |
+
font-size: 0.875rem;
|
861 |
+
color: #6b7280;
|
862 |
+
margin-bottom: 5px;
|
863 |
+
}
|
864 |
|
865 |
+
/* Processing indicator */
|
866 |
+
.processing-indicator {
|
867 |
+
background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%);
|
868 |
+
color: #333;
|
869 |
+
padding: 1rem 1.5rem;
|
870 |
+
border-radius: 12px;
|
871 |
+
margin: 1rem 0;
|
872 |
+
margin-left: 0;
|
873 |
+
margin-right: auto;
|
874 |
+
max-width: 70%;
|
875 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
876 |
+
animation: pulse 2s infinite;
|
877 |
+
}
|
878 |
|
879 |
+
@keyframes pulse {
|
880 |
+
0% { opacity: 1; }
|
881 |
+
50% { opacity: 0.7; }
|
882 |
+
100% { opacity: 1; }
|
883 |
+
}
|
|
|
884 |
|
885 |
+
/* Feedback box */
|
886 |
+
.feedback-section {
|
887 |
+
background-color: #f8f9fa;
|
888 |
+
border: 1px solid #dee2e6;
|
889 |
+
padding: 1rem;
|
890 |
+
border-radius: 8px;
|
891 |
+
margin: 1rem 0;
|
892 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
893 |
|
894 |
+
/* Success and error messages */
|
895 |
+
.success-message {
|
896 |
+
background-color: #d1e7dd;
|
897 |
+
color: #0f5132;
|
898 |
+
padding: 1rem;
|
899 |
+
border-radius: 6px;
|
900 |
+
border: 1px solid #badbcc;
|
901 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
902 |
|
903 |
+
.error-message {
|
904 |
+
background-color: #f8d7da;
|
905 |
+
color: #842029;
|
906 |
+
padding: 1rem;
|
907 |
+
border-radius: 6px;
|
908 |
+
border: 1px solid #f5c2c7;
|
909 |
+
}
|
910 |
|
911 |
+
/* Chat input styling - Fixed alignment */
|
912 |
+
# .stChatInput {
|
913 |
+
# border-radius: 12px !important;
|
914 |
+
# border: 2px solid #e5e7eb !important;
|
915 |
+
# background: #ffffff !important;
|
916 |
+
# padding: 0.75rem 1rem !important;
|
917 |
+
# font-size: 1rem !important;
|
918 |
+
# width: 100% !important;
|
919 |
+
# max-width: 70% !important;
|
920 |
+
# margin: 0 !important;
|
921 |
+
# box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important;
|
922 |
+
# transition: all 0.2s ease !important;
|
923 |
+
# }
|
924 |
|
925 |
+
# .stChatInput:focus {
|
926 |
+
# border-color: #3b82f6 !important;
|
927 |
+
# box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.1) !important;
|
928 |
+
# outline: none !important;
|
929 |
+
# }
|
930 |
|
931 |
+
/* Chat input container */
|
932 |
+
.stChatInput > div {
|
933 |
+
padding: 0 !important;
|
934 |
+
margin: 0 !important;
|
935 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
936 |
|
937 |
+
/* Chat input text area */
|
938 |
+
# .stChatInput textarea {
|
939 |
+
# border: none !important;
|
940 |
+
# background: transparent !important;
|
941 |
+
# padding: 0 !important;
|
942 |
+
# margin: 0 !important;
|
943 |
+
# font-size: 1rem !important;
|
944 |
+
# line-height: 1.5 !important;
|
945 |
+
# resize: none !important;
|
946 |
+
# outline: none !important;
|
947 |
+
# }
|
948 |
|
949 |
+
/* Chat input placeholder */
|
950 |
+
# .stChatInput textarea::placeholder {
|
951 |
+
# color: #9ca3af !important;
|
952 |
+
# font-style: normal !important;
|
953 |
+
# }
|
|
|
954 |
|
955 |
+
.st-emotion-cache-f4ro0r {
|
956 |
+
align-items = center;
|
957 |
+
}
|
958 |
|
959 |
+
/* Fix the main chat input container alignment */
|
960 |
+
[data-testid="stChatInput"] {
|
961 |
+
position: fixed !important;
|
962 |
+
bottom: 0.5rem !important;
|
963 |
+
left: 6rem !important;
|
964 |
+
right: 0 !important;
|
965 |
+
background: #ffffff !important;
|
966 |
+
width: 65% !important;
|
967 |
+
box-shadow: 0 -2px 10px rgba(0, 0, 0, 0.1) !important;
|
968 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
969 |
|
970 |
+
/* Adjust main content to account for fixed chat input */
|
971 |
+
.main .block-container {
|
972 |
+
padding-bottom: 100px !important;
|
973 |
+
}
|
|
|
|
|
|
|
974 |
|
975 |
+
/* Chat input button styling */
|
976 |
+
[data-testid="stChatInput"] button {
|
977 |
+
background: #3b82f6 !important;
|
978 |
+
color: white !important;
|
979 |
+
border: none !important;
|
980 |
+
border-radius: 12px !important;
|
981 |
+
font-weight: 600 !important;
|
982 |
+
transition: background-color 0.2s ease !important;
|
983 |
+
}
|
984 |
|
985 |
+
[data-testid="stChatInput"] button:hover {
|
986 |
+
background: #2563eb !important;
|
987 |
+
}
|
988 |
|
989 |
+
/* Textarea inside chat input */
|
990 |
+
[data-testid="stChatInput"] [data-baseweb="textarea"] {
|
991 |
+
border: 2px solid #3b82f6 !important;
|
992 |
+
border-radius: 12px !important;
|
993 |
+
font-size: 16px !important;
|
994 |
+
color: #111 !important;
|
995 |
|
996 |
+
width: 100% !important; /* fill the parent container */
|
997 |
+
box-sizing: border-box !important;
|
998 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
999 |
|
1000 |
+
/* Ensure proper spacing from sidebar */
|
1001 |
+
@media (min-width: 768px) {
|
1002 |
+
[data-testid="stChatInput"] {
|
1003 |
+
margin-left: 21rem !important; /* Account for sidebar width */
|
1004 |
+
}
|
1005 |
+
}
|
1006 |
|
1007 |
+
/* Code container styling */
|
1008 |
+
.code-container {
|
1009 |
+
margin: 1rem 0;
|
1010 |
+
border: 1px solid #d1d5db;
|
1011 |
+
border-radius: 12px;
|
1012 |
+
background: white;
|
1013 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
1014 |
+
}
|
|
|
|
|
|
|
|
|
1015 |
|
1016 |
+
.code-header {
|
1017 |
+
display: flex;
|
1018 |
+
justify-content: space-between;
|
1019 |
+
align-items: center;
|
1020 |
+
padding: 0.875rem 1.25rem;
|
1021 |
+
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%);
|
1022 |
+
border-bottom: 1px solid #e2e8f0;
|
1023 |
+
cursor: pointer;
|
1024 |
+
transition: all 0.2s ease;
|
1025 |
+
border-radius: 12px 12px 0 0;
|
1026 |
+
}
|
1027 |
|
1028 |
+
.code-header:hover {
|
1029 |
+
background: linear-gradient(135deg, #e2e8f0 0%, #cbd5e1 100%);
|
1030 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1031 |
|
1032 |
+
.code-title {
|
1033 |
+
font-size: 0.9rem;
|
1034 |
+
font-weight: 600;
|
1035 |
+
color: #1e293b;
|
1036 |
+
display: flex;
|
1037 |
+
align-items: center;
|
1038 |
+
gap: 0.5rem;
|
1039 |
+
}
|
1040 |
|
1041 |
+
.code-title:before {
|
1042 |
+
content: "⚡";
|
1043 |
+
font-size: 0.8rem;
|
1044 |
+
}
|
1045 |
|
1046 |
+
.toggle-text {
|
1047 |
+
font-size: 0.75rem;
|
1048 |
+
color: #64748b;
|
1049 |
+
font-weight: 500;
|
1050 |
+
}
|
1051 |
|
1052 |
+
.code-block {
|
1053 |
+
background: linear-gradient(135deg, #0f172a 0%, #1e293b 100%);
|
1054 |
+
color: #e2e8f0;
|
1055 |
+
padding: 1.5rem;
|
1056 |
+
font-family: 'SF Mono', 'Monaco', 'Menlo', 'Consolas', monospace;
|
1057 |
+
font-size: 0.875rem;
|
1058 |
+
overflow-x: auto;
|
1059 |
+
line-height: 1.6;
|
1060 |
+
border-radius: 0 0 12px 12px;
|
1061 |
+
}
|
1062 |
|
1063 |
+
.answer-container {
|
1064 |
+
background: #f8fafc;
|
1065 |
+
border: 1px solid #e2e8f0;
|
1066 |
+
border-radius: 8px;
|
1067 |
+
padding: 1.5rem;
|
1068 |
+
margin: 1rem 0;
|
1069 |
+
}
|
|
|
|
|
|
|
|
|
|
|
1070 |
|
1071 |
+
.answer-text {
|
1072 |
+
font-size: 1.125rem;
|
1073 |
+
color: #1e293b;
|
1074 |
+
line-height: 1.6;
|
1075 |
+
margin-bottom: 1rem;
|
1076 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1077 |
|
1078 |
+
.answer-highlight {
|
1079 |
+
background: #fef3c7;
|
1080 |
+
padding: 0.125rem 0.375rem;
|
1081 |
+
border-radius: 4px;
|
1082 |
+
font-weight: 600;
|
1083 |
+
color: #92400e;
|
1084 |
+
}
|
|
|
|
|
|
|
|
|
|
|
1085 |
|
1086 |
+
.context-info {
|
1087 |
+
background: #f1f5f9;
|
1088 |
+
border-left: 4px solid #3b82f6;
|
1089 |
+
padding: 0.75rem 1rem;
|
1090 |
+
margin: 1rem 0;
|
1091 |
+
font-size: 0.875rem;
|
1092 |
+
color: #475569;
|
1093 |
+
}
|
1094 |
|
1095 |
+
/* Hide default menu and footer */
|
1096 |
+
#MainMenu {visibility: hidden;}
|
1097 |
+
footer {visibility: hidden;}
|
1098 |
+
header {visibility: hidden;}
|
1099 |
|
1100 |
+
/* Auto scroll */
|
1101 |
+
.main-container {
|
1102 |
+
height: 70vh;
|
1103 |
+
overflow-y: auto;
|
1104 |
+
}
|
1105 |
+
</style>
|
1106 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|