VayuChat / src.py
Nipun's picture
Implement ultra-high DPI plots and fix UI responsiveness
95b3c75
raw
history blame
14.5 kB
import os
import pandas as pd
from typing import Tuple
from PIL import Image
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
import matplotlib.pyplot as plt
import json
from datetime import datetime
from huggingface_hub import HfApi
import uuid
# FORCE reload environment variables
load_dotenv(override=True)
# Get API keys with explicit None handling and debugging
Groq_Token = os.getenv("GROQ_API_KEY")
hf_token = os.getenv("HF_TOKEN")
gemini_token = os.getenv("GEMINI_TOKEN")
# Debug print (remove in production)
# print(f"Debug - Groq Token: {'Present' if Groq_Token else 'Missing'}")
# print(f"Debug - Groq Token Value: {Groq_Token[:10] + '...' if Groq_Token else 'None'}")
# print(f"Debug - Gemini Token: {'Present' if gemini_token else 'Missing'}")
models = {
"gpt-oss-120b": "openai/gpt-oss-120b",
"qwen3-32b": "qwen/qwen3-32b",
"gpt-oss-20b": "openai/gpt-oss-20b",
"llama4 maverik":"meta-llama/llama-4-maverick-17b-128e-instruct",
"llama3.3": "llama-3.3-70b-versatile",
"deepseek-R1": "deepseek-r1-distill-llama-70b",
"gemini-2.5-flash": "gemini-2.5-flash",
"gemini-2.5-pro": "gemini-2.5-pro",
"gemini-2.5-flash-lite": "gemini-2.5-flash-lite",
"gemini-2.0-flash": "gemini-2.0-flash",
"gemini-2.0-flash-lite": "gemini-2.0-flash-lite",
# "llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct"
# "llama3.1": "llama-3.1-8b-instant"
}
def log_interaction(user_query, model_name, response_content, generated_code, execution_time, error_message=None, is_image=False):
"""Log user interactions to Hugging Face dataset"""
try:
if not hf_token or hf_token.strip() == "":
print("Warning: HF_TOKEN not available, skipping logging")
return
# Create log entry
log_entry = {
"timestamp": datetime.now().isoformat(),
"session_id": str(uuid.uuid4()),
"user_query": user_query,
"model_name": model_name,
"response_content": str(response_content),
"generated_code": generated_code or "",
"execution_time_seconds": execution_time,
"error_message": error_message or "",
"is_image_output": is_image,
"success": error_message is None
}
# Create DataFrame
df = pd.DataFrame([log_entry])
# Create unique filename with timestamp
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
random_id = str(uuid.uuid4())[:8]
filename = f"interaction_log_{timestamp_str}_{random_id}.parquet"
# Save locally first
local_path = f"/tmp/{filename}"
df.to_parquet(local_path, index=False)
# Upload to Hugging Face
api = HfApi(token=hf_token)
api.upload_file(
path_or_fileobj=local_path,
path_in_repo=f"data/{filename}",
repo_id="SustainabilityLabIITGN/VayuChat_logs",
repo_type="dataset",
)
# Clean up local file
if os.path.exists(local_path):
os.remove(local_path)
print(f"Successfully logged interaction to HuggingFace: {filename}")
except Exception as e:
print(f"Error logging interaction: {e}")
def preprocess_and_load_df(path: str) -> pd.DataFrame:
"""Load and preprocess the dataframe"""
try:
df = pd.read_csv(path)
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
return df
except Exception as e:
raise Exception(f"Error loading dataframe: {e}")
def get_from_user(prompt):
"""Format user prompt"""
return {"role": "user", "content": prompt}
def ask_question(model_name, question):
"""Ask question with comprehensive error handling and logging"""
start_time = datetime.now()
# ------------------------
# Helper functions
# ------------------------
def make_error_response(msg, log_msg, content=None):
"""Build error response + log it"""
execution_time = (datetime.now() - start_time).total_seconds()
log_interaction(
user_query=question,
model_name=model_name,
response_content=content or msg,
generated_code="",
execution_time=execution_time,
error_message=log_msg,
is_image=False
)
return {
"role": "assistant",
"content": content or msg,
"gen_code": "",
"ex_code": "",
"last_prompt": question,
"error": log_msg
}
def validate_api_token(token, token_name, msg_if_missing):
"""Check for missing/empty API tokens"""
if not token or token.strip() == "":
return make_error_response(
msg="Missing or empty API token",
log_msg="Missing or empty API token",
content=msg_if_missing
)
return None # OK
def run_safe_exec(full_code, df=None, extra_globals=None):
"""Safely execute generated code and handle errors"""
local_vars = {}
# Force matplotlib to use high resolution settings in exec environment
plt.style.use('vayuchat.mplstyle')
plt.rcParams['figure.dpi'] = 1200
plt.rcParams['savefig.dpi'] = 1200
plt.rcParams['figure.figsize'] = [12, 7]
plt.rcParams['font.size'] = 11
plt.rcParams['axes.titlesize'] = 14
plt.rcParams['axes.labelsize'] = 12
plt.rcParams['xtick.labelsize'] = 10
plt.rcParams['ytick.labelsize'] = 10
plt.rcParams['legend.fontsize'] = 10
global_vars = {
'pd': pd, 'plt': plt, 'os': os,
'sns': __import__('seaborn'),
'uuid': __import__('uuid'),
'calendar': __import__('calendar'),
'np': __import__('numpy'),
'df': df # <-- pass your DataFrame here
}
# allow user to inject more globals (optional)
if extra_globals:
global_vars.update(extra_globals)
try:
exec(full_code, global_vars, local_vars)
return (
local_vars.get('answer', "Code executed but no result was saved in 'answer' variable"),
None
)
except Exception as code_error:
return None, str(code_error)
# ------------------------
# Step 1: Reload env vars
# ------------------------
load_dotenv(override=True)
fresh_groq_token = os.getenv("GROQ_API_KEY")
fresh_gemini_token = os.getenv("GEMINI_TOKEN")
# ------------------------
# Step 2: Init LLM
# ------------------------
try:
if "gemini" in model_name:
token_error = validate_api_token(
fresh_gemini_token,
"GEMINI_TOKEN",
"Gemini API token not available or empty. Please set GEMINI_TOKEN in your environment variable."
)
if token_error:
return token_error
try:
llm = ChatGoogleGenerativeAI(
model=models[model_name],
google_api_key=fresh_gemini_token,
temperature=0
)
# Gemini requires async call
llm.invoke("Test")
# print("Gemini API key test successful")
except Exception as api_error:
return make_error_response(
msg="API Connection Error",
log_msg=str(api_error),
content="API Key Error: Your Gemini API key appears to be invalid, expired, or restricted. Please check your GEMINI_TOKEN in the .env file."
if "organization_restricted"in str(api_error).lower() or "unauthorized" in str(api_error).lower()
else f"API Connection Error: {api_error}"
)
else:
token_error = validate_api_token(
fresh_groq_token,
"GROQ_API_KEY",
"Groq API token not available or empty. Please set GROQ_API_KEY in your environment variables and restart the application."
)
if token_error:
return token_error
try:
llm = ChatGroq(
model=models[model_name],
api_key=fresh_groq_token,
temperature=0
)
llm.invoke("Test") # test API key
# print("Groq API key test successful")
except Exception as api_error:
return make_error_response(
msg="API Connection Error",
log_msg=str(api_error),
content="API Key Error: Your Groq API key appears to be invalid, expired, or restricted. Please check your GROQ_API_KEY in the .env file."
if "organization_restricted"in str(api_error).lower() or "unauthorized" in str(api_error).lower()
else f"API Connection Error: {api_error}"
)
except Exception as e:
return make_error_response(str(e), str(e))
# ------------------------
# Step 3: Check AQ_met_data.csv
# ------------------------
if not os.path.exists("AQ_met_data.csv"):
return make_error_response(
msg="Data file not found",
log_msg="Data file not found",
content="AQ_met_data.csv file not found. Please ensure the data file is in the correct location."
)
df = pd.read_csv("AQ_met_data.csv")
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
new_line = "\n"
states_df = pd.read_csv("states_data.csv")
ncap_df = pd.read_csv("ncap_funding_data.csv")
# Template for user query
template = f"""```python
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import uuid
import calendar
import numpy as np
# Set professional matplotlib styling with high resolution
plt.style.use('vayuchat.mplstyle')
df = pd.read_csv("AQ_met_data.csv")
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
states_df = pd.read_csv("states_data.csv")
ncap_df = pd.read_csv("ncap_funding_data.csv")
# df is pandas DataFrame with air quality data from India. Data frequency is daily from 2017 to 2024. The data has the following columns and data types:
{new_line.join(map(lambda x: '# '+x, str(df.dtypes).split(new_line)))}
# states_df is a pandas DataFrame of state-wise population, area and whether state is union territory or not of India.
{new_line.join(map(lambda x: '# '+x, str(states_df.dtypes).split(new_line)))}
# ncap_df is a pandas DataFrame of funding given to the cities of India from 2019-2022, under The National Clean Air Program (NCAP).
{new_line.join(map(lambda x: '# '+x, str(ncap_df.dtypes).split(new_line)))}
# Question: {question.strip()}
# Generate code to answer the question and save result in 'answer' variable
# If creating a plot, save it with a unique filename and store the filename in 'answer'
# If returning text/numbers, store the result directly in 'answer'
```"""
# Read system prompt from txt file
with open("new_system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read().strip()
messages = [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": f"""Complete the following code to answer the user's question:
{template}"""
}
]
# ------------------------
# Step 4: Call model
# ------------------------
try:
response = llm.invoke(messages)
answer = response.content
except Exception as e:
return make_error_response(f"Error: {e}", str(e))
# ------------------------
# Step 5: Extract code
# ------------------------
code_part = answer.split("```python")[1].split("```")[0] if "```python" in answer else answer
full_code = f"""
{template.split("```python")[1].split("```")[0]}
{code_part}
"""
answer_result, code_error = run_safe_exec(full_code, df, extra_globals={'states_df': states_df, 'ncap_df': ncap_df})
execution_time = (datetime.now() - start_time).total_seconds()
if code_error:
# Friendly error messages
msg = "I encountered an error while analyzing your data. "
if "syntax" in code_error.lower():
msg += "There was a syntax error in the generated code. Please try rephrasing your question."
elif "not defined" in code_error.lower():
msg += "Variable naming error occurred. Please try asking the question again."
elif "division by zero" in code_error.lower():
msg += "Calculation involved division by zero, possibly due to missing data."
elif "no data" in code_error.lower() or "empty" in code_error.lower():
msg += "No relevant data was found for your query."
else:
msg += f"Technical error: {code_error}"
msg += "\n\n💡 **Suggestions:**\n- Try rephrasing your question\n- Use simpler terms\n- Check if the data exists for your specified criteria"
log_interaction(
user_query=question,
model_name=model_name,
response_content=msg,
generated_code=full_code,
execution_time=execution_time,
error_message=code_error,
is_image=False
)
return {
"role": "assistant",
"content": msg,
"gen_code": full_code,
"ex_code": full_code,
"last_prompt": question,
"error": code_error
}
# ------------------------
# Step 7: Success logging
# ------------------------
is_image = isinstance(answer_result, str) and answer_result.endswith(('.png', '.jpg', '.jpeg'))
log_interaction(
user_query=question,
model_name=model_name,
response_content=str(answer_result),
generated_code=full_code,
execution_time=execution_time,
error_message=None,
is_image=is_image
)
return {
"role": "assistant",
"content": answer_result,
"gen_code": full_code,
"ex_code": full_code,
"last_prompt": question,
"error": None
}