File size: 36,389 Bytes
983aeb4
 
 
 
 
 
ab2f1d4
983aeb4
 
 
 
 
 
 
 
 
 
 
 
 
 
1b433ca
 
 
 
 
 
 
 
983aeb4
 
 
c739af5
bb0db22
983aeb4
 
 
 
 
33930c1
983aeb4
 
 
 
 
 
 
 
9c6a431
 
2c04b84
33930c1
9c6a431
 
 
2c04b84
 
 
 
 
 
 
 
 
 
983aeb4
 
 
 
 
 
 
ab2f1d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
983aeb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0db22
6b395c2
d0f303d
c893ceb
 
983aeb4
 
 
bb0db22
 
d0f303d
983aeb4
 
 
 
bb0db22
 
d0f303d
bb0db22
e939a33
983aeb4
 
 
bb0db22
 
983aeb4
 
 
 
 
 
 
2c04b84
 
 
983aeb4
 
2c04b84
983aeb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33930c1
 
f18b1e1
b77e12e
f18b1e1
33930c1
 
 
 
 
 
 
983aeb4
 
33930c1
f18b1e1
33930c1
 
 
 
 
 
 
 
983aeb4
 
33930c1
 
d8b06b3
 
33930c1
 
d8b06b3
 
 
 
983aeb4
 
33930c1
 
d8b06b3
 
 
 
33930c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18b1e1
 
 
 
8ab7769
f18b1e1
 
 
d8b06b3
 
f18b1e1
 
d8b06b3
 
33930c1
 
 
 
 
bbc63a5
 
bb0db22
 
 
db29da7
 
 
 
bb0db22
 
 
 
 
 
db29da7
 
bb0db22
 
db29da7
 
bb0db22
 
 
db29da7
bb0db22
 
 
db29da7
 
 
 
 
 
 
 
 
 
 
bb0db22
 
 
 
db29da7
 
bb0db22
 
 
db29da7
bb0db22
db29da7
 
bb0db22
 
db29da7
 
bb0db22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
983aeb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0db22
983aeb4
 
 
 
 
 
 
 
 
 
 
bb0db22
 
 
 
 
 
 
 
 
 
 
 
 
983aeb4
 
 
 
 
 
 
 
 
 
 
1b433ca
983aeb4
80cff10
e1bd504
1b433ca
 
983aeb4
80cff10
1b433ca
 
 
 
 
 
 
983aeb4
 
 
 
 
 
 
 
 
 
 
 
bb0db22
983aeb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc052ee
983aeb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8067596
983aeb4
 
 
 
 
 
 
 
 
 
8067596
983aeb4
 
 
 
 
 
 
 
 
bb0db22
983aeb4
 
 
bb0db22
983aeb4
 
 
bb0db22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
983aeb4
80a5c5e
bb0db22
80a5c5e
1b433ca
80a5c5e
 
bb0db22
af24b39
7c9af8a
2a57e86
 
 
 
3d1cb03
 
 
 
 
2a57e86
 
3d1cb03
37141e9
af24b39
 
3d1cb03
af24b39
3d1cb03
 
891c0e6
af24b39
 
3d1cb03
 
 
891c0e6
af24b39
3d1cb03
2a57e86
 
983aeb4
3645162
 
 
 
 
983aeb4
3645162
d0f303d
983aeb4
bb0db22
983aeb4
 
 
 
 
d0f303d
983aeb4
44a8091
 
 
 
 
 
 
 
 
 
 
 
bb0db22
3645162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0db22
 
 
 
 
 
 
bbc63a5
44a3b70
 
bbc63a5
44a3b70
bbc63a5
 
44a3b70
 
 
a1a7ed8
 
 
 
 
bb0db22
 
7102d87
bb0db22
983aeb4
d0f303d
e939a33
 
 
8dbe5f9
 
 
 
 
 
 
 
 
e939a33
8dbe5f9
e939a33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc63a5
 
 
d0f303d
983aeb4
bb0db22
983aeb4
 
 
 
 
 
 
 
95f4c51
 
 
 
 
 
 
 
bbc63a5
983aeb4
 
 
bb0db22
983aeb4
 
 
 
d0f303d
983aeb4
d0f303d
bb0db22
 
 
983aeb4
 
 
73166b8
 
 
c372914
 
 
 
ab2f1d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f303d
ab2f1d4
73166b8
 
 
ab2f1d4
73166b8
 
bb0db22
73166b8
c372914
 
ab2f1d4
c372914
 
ab2f1d4
c372914
 
 
 
bbd6d06
 
 
 
 
 
 
 
c372914
983aeb4
d0f303d
983aeb4
d0f303d
 
983aeb4
 
 
 
 
d0f303d
7b4da8e
983aeb4
d0f303d
 
 
 
 
 
 
 
7b4da8e
d0f303d
983aeb4
 
 
 
 
 
57ba99b
 
 
 
 
 
 
 
 
 
 
 
ace8864
983aeb4
2a57e86
 
 
57ba99b
2a57e86
57ba99b
2a57e86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57ba99b
2a57e86
 
7b4da8e
57ba99b
2a57e86
7b4da8e
 
 
2a57e86
57ba99b
2a57e86
7b4da8e
 
 
2a57e86
 
 
 
e939a33
2a57e86
 
 
 
 
 
 
 
983aeb4
bbc63a5
7b4da8e
983aeb4
 
 
 
 
ab2f1d4
 
 
 
 
983aeb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7875cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423cc2a
 
 
 
 
 
983aeb4
423cc2a
983aeb4
 
423cc2a
983aeb4
 
 
423cc2a
ab2f1d4
983aeb4
 
423cc2a
 
 
 
 
 
 
983aeb4
423cc2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
983aeb4
ace8864
 
 
73166b8
 
983aeb4
 
bbd6d06
 
 
 
 
 
 
 
 
1b433ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
import streamlit as st
import os
import json
import pandas as pd
import random
from datetime import datetime
from os.path import join
from src import (
    preprocess_and_load_df,
    get_from_user,
    ask_question,
)
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from streamlit_feedback import streamlit_feedback
from huggingface_hub import HfApi
from datasets import load_dataset, get_dataset_config_info, Dataset
from PIL import Image
import time
import uuid
import asyncio

# Gemini API requires async
try:
    asyncio.get_running_loop()
except RuntimeError:
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)

# Page config with beautiful theme
st.set_page_config(
    page_title="VayuChat - AI Air Quality Assistant",
    page_icon="V",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for beautiful styling
st.markdown("""
<style>
/* Clean app background */
.stApp {
    background-color: #ffffff;
    color: #212529;
    font-family: 'Segoe UI', sans-serif;
}

/* Reduce main container padding */
.main .block-container {
    padding-top: 0.5rem;
    padding-bottom: 3rem;
    max-width: 100%;
}

/* Remove excessive spacing */
.element-container {
    margin-bottom: 0.5rem !important;
}

/* Fix sidebar spacing */
[data-testid="stSidebar"] .element-container {
    margin-bottom: 0.25rem !important;
}

/* Sidebar */
[data-testid="stSidebar"] {
    background-color: #f8f9fa;
    border-right: 1px solid #dee2e6;
    padding: 1rem;
}

/* Optimize sidebar scrolling */
[data-testid="stSidebar"] > div:first-child {
    height: 100vh;
    overflow-y: auto;
    padding-bottom: 2rem;
}

[data-testid="stSidebar"]::-webkit-scrollbar {
    width: 6px;
}

[data-testid="stSidebar"]::-webkit-scrollbar-track {
    background: #f1f1f1;
    border-radius: 3px;
}

[data-testid="stSidebar"]::-webkit-scrollbar-thumb {
    background: #c1c1c1;
    border-radius: 3px;
}

[data-testid="stSidebar"]::-webkit-scrollbar-thumb:hover {
    background: #a1a1a1;
}

/* Main title */
.main-title {
    text-align: center;
    color: #343a40;
    font-size: 2.5rem;
    font-weight: 700;
    margin-bottom: 0.5rem;
}

/* Subtitle */
.subtitle {
    text-align: center;
    color: #6c757d;
    font-size: 1.1rem;
    margin-bottom: 1.5rem;
}

/* Instructions */
.instructions {
    background-color: #f1f3f5;
    border-left: 4px solid #0d6efd;
    padding: 1rem;
    margin-bottom: 1.5rem;
    border-radius: 6px;
    color: #495057;
    text-align: left;
}

/* Quick prompt buttons */
.quick-prompt-container {
    display: flex;
    flex-wrap: wrap;
    gap: 8px;
    margin-bottom: 1.5rem;
    padding: 1rem;
    background-color: #f8f9fa;
    border-radius: 10px;
    border: 1px solid #dee2e6;
}

.quick-prompt-btn {
    background-color: #0d6efd;
    color: white;
    border: none;
    padding: 8px 16px;
    border-radius: 20px;
    font-size: 0.9rem;
    cursor: pointer;
    transition: all 0.2s ease;
    white-space: nowrap;
}

.quick-prompt-btn:hover {
    background-color: #0b5ed7;
    transform: translateY(-2px);
}

/* User message styling */
.user-message {
    background: #3b82f6;
    color: white;
    padding: 0.75rem 1rem;
    border-radius: 7px;
    max-width: 95%;
}

.user-info {
    font-size: 0.875rem;
    opacity: 0.9;
    margin-bottom: 3px;
}

/* Assistant message styling */
.assistant-message {
    background: #f1f5f9;
    color: #334155;
    padding: 0.75rem 1rem;
    border-radius: 12px;
    max-width: 85%;
}

.assistant-info {
    font-size: 0.875rem;
    color: #6b7280;
    margin-bottom: 5px;
}

/* Processing indicator */
.processing-indicator {
    background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%);
    color: #333;
    padding: 1rem 1.5rem;
    border-radius: 12px;
    margin: 1rem 0;
    margin-left: 0;
    margin-right: auto;
    max-width: 70%;
    box-shadow: 0 2px 10px rgba(0,0,0,0.1);
    animation: pulse 2s infinite;
}

@keyframes pulse {
    0% { opacity: 1; }
    50% { opacity: 0.7; }
    100% { opacity: 1; }
}

/* Feedback box */
.feedback-section {
    background-color: #f8f9fa;
    border: 1px solid #dee2e6;
    padding: 1rem;
    border-radius: 8px;
    margin: 1rem 0;
}

/* Success and error messages */
.success-message {
    background-color: #d1e7dd;
    color: #0f5132;
    padding: 1rem;
    border-radius: 6px;
    border: 1px solid #badbcc;
}

.error-message {
    background-color: #f8d7da;
    color: #842029;
    padding: 1rem;
    border-radius: 6px;
    border: 1px solid #f5c2c7;
}

/* Chat input styling - Fixed alignment */
.stChatInput {
    border-radius: 12px !important;
    border: 5px solid #e5e7eb !important;
    background: #ffffff !important;
    padding: 0.75rem 1rem !important;
    font-size: 1rem !important;
    width: 100% !important;
    max-width: none !important;
    margin: 0 !important;
    box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important;
    transition: all 0.2s ease !important;
}

.stChatInput:focus {
    border-color: #3b82f6 !important;
    box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.1) !important;
    outline: none !important;
}

/* Chat input container */
.stChatInput > div {
    padding: 0 !important;
    margin: 0 !important;
}

/* Chat input text area */
.stChatInput textarea {
    border: none !important;
    background: transparent !important;
    padding: 0 !important;
    margin: 0 !important;
    font-size: 1rem !important;
    line-height: 1.5 !important;
    resize: none !important;
    outline: none !important;
}

/* Chat input placeholder */
.stChatInput textarea::placeholder {
    color: #9ca3af !important;
    font-style: normal !important;
}

/* Fix the main chat input container alignment */
[data-testid="stChatInput"] {
    position: fixed !important;
    bottom: 0 !important;
    left: 0 !important;
    right: 0 !important;
    background: #ffffff !important;
    border-top: 1px solid #e5e7eb !important;
    padding: 1rem !important;
    z-index: 1000 !important;
    box-shadow: 0 -2px 10px rgba(0, 0, 0, 0.1) !important;
}

/* Adjust main content to account for fixed chat input */
.main .block-container {
    padding-bottom: 100px !important;
}

# /* Alternative: If you prefer inline chat input (not fixed) */
# /*
# [data-testid="stChatInput"] {
#     background: #f8fafc !important;
#     border: 1px solid #e2e8f0 !important;
#     border-radius: 12px !important;
#     padding: 0.75rem !important;
#     margin: 1rem 0 !important;
#     box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05) !important;
# }
# */

/* Chat input button styling */
[data-testid="stChatInput"] button {
    background: #3b82f6 !important;
    color: white !important;
    border: none !important;
    border-radius: 12px !important;
    padding: 0.5rem 1rem !important;
    font-weight: 600 !important;
    transition: background-color 0.2s ease !important;
}

[data-testid="stChatInput"] button:hover {
    background: #2563eb !important;
}

/* Ensure proper spacing from sidebar */
@media (min-width: 768px) {
    [data-testid="stChatInput"] {
        margin-left: 21rem !important; /* Account for sidebar width */
    }
}

/* Code container styling */
.code-container {
    margin: 1rem 0;
    border: 1px solid #d1d5db;
    border-radius: 12px;
    background: white;
    box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
}

.code-header {
    display: flex;
    justify-content: space-between;
    align-items: center;
    padding: 0.875rem 1.25rem;
    background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%);
    border-bottom: 1px solid #e2e8f0;
    cursor: pointer;
    transition: all 0.2s ease;
    border-radius: 12px 12px 0 0;
}

.code-header:hover {
    background: linear-gradient(135deg, #e2e8f0 0%, #cbd5e1 100%);
}

.code-title {
    font-size: 0.9rem;
    font-weight: 600;
    color: #1e293b;
    display: flex;
    align-items: center;
    gap: 0.5rem;
}

.code-title:before {
    content: "⚑";
    font-size: 0.8rem;
}

.toggle-text {
    font-size: 0.75rem;
    color: #64748b;
    font-weight: 500;
}

.code-block {
    background: linear-gradient(135deg, #0f172a 0%, #1e293b 100%);
    color: #e2e8f0;
    padding: 1.5rem;
    font-family: 'SF Mono', 'Monaco', 'Menlo', 'Consolas', monospace;
    font-size: 0.875rem;
    overflow-x: auto;
    line-height: 1.6;
    border-radius: 0 0 12px 12px;
}

.answer-container {
    background: #f8fafc;
    border: 1px solid #e2e8f0;
    border-radius: 8px;
    padding: 1.5rem;
    margin: 1rem 0;
}

.answer-text {
    font-size: 1.125rem;
    color: #1e293b;
    line-height: 1.6;
    margin-bottom: 1rem;
}

.answer-highlight {
    background: #fef3c7;
    padding: 0.125rem 0.375rem;
    border-radius: 4px;
    font-weight: 600;
    color: #92400e;
}

.context-info {
    background: #f1f5f9;
    border-left: 4px solid #3b82f6;
    padding: 0.75rem 1rem;
    margin: 1rem 0;
    font-size: 0.875rem;
    color: #475569;
}

/* Hide default menu and footer */
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}

/* Auto scroll */
.main-container {
    height: 70vh;
    overflow-y: auto;
}
</style>
""", unsafe_allow_html=True)

# JavaScript for interactions
st.markdown("""
<script>
function scrollToBottom() {
    setTimeout(function() {
        const mainContainer = document.querySelector('.main-container');
        if (mainContainer) {
            mainContainer.scrollTop = mainContainer.scrollHeight;
        }
        window.scrollTo(0, document.body.scrollHeight);
    }, 100);
}

function toggleCode(header) {
    const codeBlock = header.nextElementSibling;
    const toggleText = header.querySelector('.toggle-text');
    
    if (codeBlock.style.display === 'none') {
        codeBlock.style.display = 'block';
        toggleText.textContent = 'Click to collapse';
    } else {
        codeBlock.style.display = 'none';
        toggleText.textContent = 'Click to expand';
    }
}
</script>
""", unsafe_allow_html=True)

# FORCE reload environment variables
load_dotenv(override=True)

# Get API keys
Groq_Token = os.getenv("GROQ_API_KEY")
hf_token = os.getenv("HF_TOKEN")
gemini_token = os.getenv("GEMINI_TOKEN")

# Model order is decided by this
models = {
    "gpt-oss-120b": "openai/gpt-oss-120b",
    "qwen3-32b": "qwen/qwen3-32b",
    "gpt-oss-20b": "openai/gpt-oss-20b",
    "llama4 maverik":"meta-llama/llama-4-maverick-17b-128e-instruct",
    "llama3.3": "llama-3.3-70b-versatile",
    "deepseek-R1": "deepseek-r1-distill-llama-70b",
    "gemini-2.5-flash": "gemini-2.5-flash",
    "gemini-2.5-pro": "gemini-2.5-pro",
    "gemini-2.5-flash-lite": "gemini-2.5-flash-lite",
    "gemini-2.0-flash": "gemini-2.0-flash",
    "gemini-2.0-flash-lite": "gemini-2.0-flash-lite",
    # "llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct"
    # "llama3.1": "llama-3.1-8b-instant"
}

self_path = os.path.dirname(os.path.abspath(__file__))

# Initialize session ID for this session
if "session_id" not in st.session_state:
    st.session_state.session_id = str(uuid.uuid4())

def upload_feedback(feedback, error, output, last_prompt, code, status):
    """Enhanced feedback upload function with better logging and error handling"""
    try:
        if not hf_token or hf_token.strip() == "":
            st.warning("Cannot upload feedback - HF_TOKEN not available")
            return False

        # Create comprehensive feedback data
        feedback_data = {
            "timestamp": datetime.now().isoformat(),
            "session_id": st.session_state.session_id,
            "feedback_score": feedback.get("score", ""),
            "feedback_comment": feedback.get("text", ""),
            "user_prompt": last_prompt,
            "ai_output": str(output),
            "generated_code": code or "",
            "error_message": error or "",
            "is_image_output": status.get("is_image", False),
            "success": not bool(error)
        }

        # Create unique folder name with timestamp
        timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
        random_id = str(uuid.uuid4())[:8]
        folder_name = f"feedback_{timestamp_str}_{random_id}"
        
        # Create markdown feedback file
        markdown_content = f"""# VayuChat Feedback Report

## Session Information
- **Timestamp**: {feedback_data['timestamp']}
- **Session ID**: {feedback_data['session_id']}

## User Interaction
**Prompt**: {feedback_data['user_prompt']}

## AI Response
**Output**: {feedback_data['ai_output']}

## Generated Code
```python
{feedback_data['generated_code']}
```

## Technical Details
- **Error Message**: {feedback_data['error_message']}
- **Is Image Output**: {feedback_data['is_image_output']}
- **Success**: {feedback_data['success']}

## User Feedback
- **Score**: {feedback_data['feedback_score']}
- **Comments**: {feedback_data['feedback_comment']}
"""

        # Save markdown file locally
        markdown_filename = f"{folder_name}.md"
        markdown_local_path = f"/tmp/{markdown_filename}"
        
        with open(markdown_local_path, "w", encoding="utf-8") as f:
            f.write(markdown_content)

        # Upload to Hugging Face
        api = HfApi(token=hf_token)
        
        # Upload markdown feedback
        api.upload_file(
            path_or_fileobj=markdown_local_path,
            path_in_repo=f"data/{markdown_filename}",
            repo_id="SustainabilityLabIITGN/VayuChat_Feedback",
            repo_type="dataset",
        )
        
        # Upload image if it exists and is an image output
        if status.get("is_image", False) and isinstance(output, str) and os.path.exists(output):
            try:
                image_filename = f"{folder_name}_plot.png"
                api.upload_file(
                    path_or_fileobj=output,
                    path_in_repo=f"data/{image_filename}",
                    repo_id="SustainabilityLabIITGN/VayuChat_Feedback",
                    repo_type="dataset",
                )
            except Exception as img_error:
                print(f"Error uploading image: {img_error}")
        
        # Clean up local files
        if os.path.exists(markdown_local_path):
            os.remove(markdown_local_path)
        
        st.success("Feedback uploaded successfully!")
        return True
        
    except Exception as e:
        st.error(f"Error uploading feedback: {e}")
        print(f"Feedback upload error: {e}")
        return False

# Filter available models
available_models = []
model_names = list(models.keys())
groq_models = []
gemini_models = []
for model_name in model_names:
    if "gemini" not in model_name:
        groq_models.append(model_name)
    else:
        gemini_models.append(model_name)
if Groq_Token and Groq_Token.strip():
    available_models.extend(groq_models)
if gemini_token and gemini_token.strip():
    available_models.extend(gemini_models)

if not available_models:
    st.error("No API keys available! Please set up your API keys in the .env file")
    st.stop()

# Set GPT-OSS-120B as default if available
default_index = 0
if "gpt-oss-120b" in available_models:
    default_index = available_models.index("gpt-oss-120b")
elif "deepseek-R1" in available_models:
    default_index = available_models.index("deepseek-R1")

# Compact header - everything perfectly aligned at same height

st.markdown("""
<div style='
    display: flex; 
    align-items: center; 
    justify-content: center; 
    padding: 0.5rem 0; 
    gap: 15px;
    border-bottom: 1px solid 
#e5e7eb;
    margin-bottom: 1rem;
'>
    <img src='https://sustainability-lab.github.io/images/logo_light.svg' 
         style='height: 80px;' />
    <h1 style='
        margin: 0; 
        font-size: 1.8rem; 
        font-weight: 700; 
        color: 
#1f2937;
        line-height: 100px;
    '>VayuChat</h1>
    <span style='
        font-size: 0.9rem; 
        color: 
#6b7280;
        line-height: 100px;
        font-weight: 500;
    '>AI Air Quality Analysis β€’ Sustainability Lab, IIT Gandhinagar</span>
</div>
""", unsafe_allow_html=True)

# Load data with caching for better performance
@st.cache_data
def load_data():
    return preprocess_and_load_df(join(self_path, "Data.csv"))

try:
    df = load_data()
    # Data loaded silently - no success message needed
except Exception as e:
    st.error(f"Error loading data: {e}")
    st.stop()

inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
image_path = "IITGN_Logo.png"

# Clean sidebar  
with st.sidebar:
    # Model selector at top of sidebar for easy access
    model_name = st.selectbox(
        "πŸ€– AI Model:",
        available_models,
        index=default_index,
        help="Choose your AI model - easily accessible without scrolling!"
    )
    
    st.markdown("---")
    
    # Quick Queries Section
    st.markdown("### πŸ’­ Quick Queries")
    
    # Load quick prompts with caching
    @st.cache_data
    def load_questions():
        questions = []
        questions_file = join(self_path, "questions.txt")
        if os.path.exists(questions_file):
            try:
                with open(questions_file, 'r', encoding='utf-8') as f:
                    content = f.read()
                    questions = [q.strip() for q in content.split("\n") if q.strip()]
            except Exception as e:
                questions = []
        return questions
    
    questions = load_questions()
    
    # Add default prompts if file doesn't exist or is empty
    if not questions:
        questions = [
            "Which month had highest pollution?",
            "Which city has worst air quality?", 
            "Show annual PM2.5 average",
            "Plot monthly average PM2.5 for 2023",
            "List all cities by pollution level",
            "Compare winter vs summer pollution",
            "Show seasonal pollution patterns",
            "Which areas exceed WHO guidelines?",
            "What are peak pollution hours?",
            "Show PM10 vs PM2.5 comparison",
            "Which station records highest variability in PM2.5?",
            "Calculate pollution improvement rate year-over-year by city",
            "Identify cities with PM2.5 levels consistently above 50 ΞΌg/mΒ³ for >6 months",
            "Find correlation between PM2.5 and PM10 across different seasons and cities",
            "Compare weekday vs weekend levels",
            "Plot yearly trend analysis",
            "Show pollution distribution by city",
            "Create correlation plot between pollutants"
        ]
    
    # Quick query buttons in sidebar
    selected_prompt = None
    
    
    # Show all questions but in a scrollable format
    if len(questions) > 0:
        st.markdown("**Select a question to analyze:**")
        
        # Getting Started section with simple questions
        getting_started_questions = questions[:10]  # First 10 simple questions
        with st.expander("πŸš€ Getting Started - Simple Questions", expanded=True):
            for i, q in enumerate(getting_started_questions):
                if st.button(q, key=f"start_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
                    selected_prompt = q
                    st.session_state.last_selected_prompt = q
        
        # Create expandable sections for better organization
        with st.expander("πŸ“Š NCAP Funding & Policy Analysis", expanded=False):
            for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['ncap', 'funding', 'investment', 'rupee'])]):
                if st.button(q, key=f"ncap_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
                    selected_prompt = q
                    st.session_state.last_selected_prompt = q
        
        with st.expander("🌬️ Meteorology & Environmental Factors", expanded=False):
            for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['wind', 'temperature', 'humidity', 'rainfall', 'meteorological', 'monsoon', 'barometric'])]):
                if st.button(q, key=f"met_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
                    selected_prompt = q
                    st.session_state.last_selected_prompt = q
        
        with st.expander("πŸ‘₯ Population & Demographics", expanded=False):
            for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['population', 'capita', 'density', 'exposure'])]):
                if st.button(q, key=f"pop_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
                    selected_prompt = q
                    st.session_state.last_selected_prompt = q
        
        with st.expander("🏭 Multi-Pollutant Analysis", expanded=False):
            for i, q in enumerate([q for q in questions if any(word in q.lower() for word in ['ozone', 'no2', 'correlation', 'multi-pollutant', 'interaction'])]):
                if st.button(q, key=f"multi_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
                    selected_prompt = q
                    st.session_state.last_selected_prompt = q
        
        with st.expander("πŸ“ˆ Other Analysis Questions", expanded=False):
            remaining_questions = [q for q in questions if not any(any(word in q.lower() for word in category) for category in [
                ['ncap', 'funding', 'investment', 'rupee'],
                ['wind', 'temperature', 'humidity', 'rainfall', 'meteorological', 'monsoon', 'barometric'],
                ['population', 'capita', 'density', 'exposure'],
                ['ozone', 'no2', 'correlation', 'multi-pollutant', 'interaction']
            ])]
            for i, q in enumerate(remaining_questions):
                if st.button(q, key=f"other_q_{i}", use_container_width=True, help=f"Analyze: {q}"):
                    selected_prompt = q
                    st.session_state.last_selected_prompt = q
    
    st.markdown("---")
    
    
    # Clear Chat Button
    if st.button("Clear Chat", use_container_width=True):
        st.session_state.responses = []
        st.session_state.processing = False
        st.session_state.session_id = str(uuid.uuid4())
        try:
            st.rerun()
        except AttributeError:
            st.experimental_rerun()

# Initialize session state first
if "responses" not in st.session_state:
    st.session_state.responses = []
if "processing" not in st.session_state:
    st.session_state.processing = False
if "session_id" not in st.session_state:
    st.session_state.session_id = str(uuid.uuid4())




def show_custom_response(response):
    """Custom response display function with improved styling"""
    role = response.get("role", "assistant")
    content = response.get("content", "")
    
    if role == "user":
        # User message with right alignment - reduced margins
        st.markdown(f"""
        <div style='display: flex; justify-content: flex-end; margin: 1rem 0;'>
            <div class='user-message'>
                {content}
            </div>
        </div>
        """, unsafe_allow_html=True)
    elif role == "assistant":
        # Check if content is an image filename - don't display the filename text
        is_image_path = isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg', '.jpeg'])
        
        # Check if content is a pandas DataFrame
        import pandas as pd
        is_dataframe = isinstance(content, pd.DataFrame)
        
        # Check for errors first and display them with special styling
        error = response.get("error")
        timestamp = response.get("timestamp", "")
        timestamp_display = f" β€’ {timestamp}" if timestamp else ""
        
        if error:
            st.markdown(f"""
            <div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
                <div class='assistant-message'>
                    <div class='assistant-info'>VayuChat{timestamp_display}</div>
                    <div class='error-message'>
                        ⚠️ <strong>Error:</strong> {error}
                        <br><br>
                        <em>πŸ’‘ Try rephrasing your question or being more specific about what you'd like to analyze.</em>
                    </div>
                </div>
            </div>
            """, unsafe_allow_html=True)
        # Assistant message with left alignment - reduced margins
        elif not is_image_path and not is_dataframe:
            st.markdown(f"""
            <div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
                <div class='assistant-message'>
                    <div class='assistant-info'>VayuChat{timestamp_display}</div>
                    {content if isinstance(content, str) else str(content)}
                </div>
            </div>
            """, unsafe_allow_html=True)
        elif is_dataframe:
            # Display DataFrame with nice formatting
            st.markdown(f"""
            <div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
                <div class='assistant-message'>
                    <div class='assistant-info'>VayuChat{timestamp_display}</div>
                    Here are the results:
                </div>
            </div>
            """, unsafe_allow_html=True)
            
            # Add context info for dataframes
            st.markdown("""
            <div class='context-info'>
                πŸ’‘ This table is interactive - click column headers to sort, or scroll to view all data.
            </div>
            """, unsafe_allow_html=True)
            
            st.dataframe(content, use_container_width=True)
        
        # Show generated code with Streamlit expander
        if response.get("gen_code"):
            with st.expander("πŸ“‹ View Generated Code", expanded=False):
                st.code(response["gen_code"], language="python")
        
        # Try to display image if content is a file path
        try:
            if isinstance(content, str) and (content.endswith('.png') or content.endswith('.jpg')):
                if os.path.exists(content):
                    # Display image without showing filename
                    st.image(content, width=800)
                    return {"is_image": True}
            # Also handle case where content shows filename but we want to show image
            elif isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg']):
                # Extract potential filename from content
                import re
                filename_match = re.search(r'([^/\\]+\.(?:png|jpg|jpeg))', content)
                if filename_match:
                    filename = filename_match.group(1)
                    if os.path.exists(filename):
                        st.image(filename, width=800)
                        return {"is_image": True}
        except:
            pass
            
        return {"is_image": False}


# Chat history
# Display chat history
for response_id, response in enumerate(st.session_state.responses):
    status = show_custom_response(response)
    
    # Show feedback section for assistant responses
    if response["role"] == "assistant":
        feedback_key = f"feedback_{int(response_id/2)}"
        error = response.get("error", "")
        output = response.get("content", "")
        last_prompt = response.get("last_prompt", "")
        code = response.get("gen_code", "")


        # Beautiful action bar with feedback and retry
        st.markdown('<div style="margin: 1.5rem 0 0.5rem 0;"></div>', unsafe_allow_html=True)  # Spacer
        
        if "feedback" in st.session_state.responses[response_id]:
            # Show submitted feedback nicely
            feedback_data = st.session_state.responses[response_id]["feedback"]
            col1, col2 = st.columns([3, 1])
            with col1:
                st.markdown(f"""
                <div style='
                    background: linear-gradient(135deg, #ecfdf5 0%, #d1fae5 100%);
                    border: 1px solid #a7f3d0;
                    border-radius: 8px;
                    padding: 0.75rem 1rem;
                    display: flex;
                    align-items: center;
                    gap: 8px;
                '>
                    <span style='font-size: 1.1rem;'>{feedback_data.get('score', '')}</span>
                    <span style='color: #059669; font-weight: 500; font-size: 0.9rem;'>
                        Thanks for your feedback!
                    </span>
                </div>
                """, unsafe_allow_html=True)
            with col2:
                if st.button("πŸ”„ Retry", key=f"retry_{response_id}", use_container_width=True):
                    user_prompt = ""
                    if response_id > 0:
                        user_prompt = st.session_state.responses[response_id-1].get("content", "")
                    if user_prompt:
                        if response_id > 0:
                            retry_prompt = st.session_state.responses[response_id-1].get("content", "")
                            del st.session_state.responses[response_id]
                            del st.session_state.responses[response_id-1]
                            st.session_state.follow_up_prompt = retry_prompt
                            st.rerun()
        else:
            # Clean feedback and retry layout
            col1, col2, col3, col4 = st.columns([2, 2, 1, 1])
            
            with col1:
                if st.button("✨ Excellent", key=f"{feedback_key}_excellent", use_container_width=True):
                    feedback = {"score": "✨ Excellent", "text": ""}
                    st.session_state.responses[response_id]["feedback"] = feedback
                    st.rerun()
            
            with col2:
                if st.button("πŸ”§ Needs work", key=f"{feedback_key}_poor", use_container_width=True):
                    feedback = {"score": "πŸ”§ Needs work", "text": ""}
                    st.session_state.responses[response_id]["feedback"] = feedback
                    st.rerun()
            
            with col4:
                if st.button("πŸ”„ Retry", key=f"retry_{response_id}", use_container_width=True):
                    user_prompt = ""
                    if response_id > 0:
                        user_prompt = st.session_state.responses[response_id-1].get("content", "")
                    if user_prompt:
                        if response_id > 0:
                            retry_prompt = st.session_state.responses[response_id-1].get("content", "")
                            del st.session_state.responses[response_id]
                            del st.session_state.responses[response_id-1]
                            st.session_state.follow_up_prompt = retry_prompt
                            st.rerun()

# Chat input with better guidance
prompt = st.chat_input("πŸ’¬ Ask about air quality trends, pollution analysis, or city comparisons...", key="main_chat")

# Handle selected prompt from quick prompts
if selected_prompt:
    prompt = selected_prompt

# Handle follow-up prompts from quick action buttons
if st.session_state.get("follow_up_prompt") and not st.session_state.get("processing"):
    prompt = st.session_state.follow_up_prompt
    st.session_state.follow_up_prompt = None  # Clear the follow-up prompt

# Handle new queries
if prompt and not st.session_state.get("processing"):
    # Prevent duplicate processing
    if "last_prompt" in st.session_state:
        last_prompt = st.session_state["last_prompt"]
        last_model_name = st.session_state.get("last_model_name", "")
        if (prompt == last_prompt) and (model_name == last_model_name):
            prompt = None

    if prompt:
        # Add user input to chat history
        user_response = get_from_user(prompt)
        st.session_state.responses.append(user_response)
        
        # Set processing state
        st.session_state.processing = True
        st.session_state.current_model = model_name
        st.session_state.current_question = prompt
        
        # Rerun to show processing indicator
        st.rerun()

# Process the question if we're in processing state
if st.session_state.get("processing"):
    # Enhanced processing indicator like Claude Code
    st.markdown("""
    <div style='padding: 1rem; text-align: center; background: #f8fafc; border-radius: 8px; margin: 1rem 0;'>
        <div style='display: flex; align-items: center; justify-content: center; gap: 0.5rem; color: #475569;'>
            <div style='font-weight: 500;'>πŸ€– Processing with """ + str(st.session_state.get('current_model', 'Unknown')) + """</div>
            <div class='dots' style='display: inline-flex; gap: 2px;'>
                <div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out;'></div>
                <div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out; animation-delay: 0.16s;'></div>
                <div class='dot' style='width: 4px; height: 4px; background: #3b82f6; border-radius: 50%; animation: bounce 1.4s infinite ease-in-out; animation-delay: 0.32s;'></div>
            </div>
        </div>
        <div style='font-size: 0.75rem; color: #6b7280; margin-top: 0.25rem;'>Analyzing data and generating response...</div>
    </div>
    <style>
    @keyframes bounce {
        0%, 80%, 100% { transform: scale(0.8); opacity: 0.5; }
        40% { transform: scale(1.2); opacity: 1; }
    }
    </style>
    """, unsafe_allow_html=True)
    
    prompt = st.session_state.get("current_question")
    model_name = st.session_state.get("current_model")
    
    try:
        response = ask_question(model_name=model_name, question=prompt)
        
        if not isinstance(response, dict):
            response = {
                "role": "assistant",
                "content": "Error: Invalid response format",
                "gen_code": "",
                "ex_code": "",
                "last_prompt": prompt,
                "error": "Invalid response format",
                "timestamp": datetime.now().strftime("%H:%M")
            }
        
        response.setdefault("role", "assistant")
        response.setdefault("content", "No content generated")
        response.setdefault("gen_code", "")
        response.setdefault("ex_code", "")
        response.setdefault("last_prompt", prompt)
        response.setdefault("error", None)
        response.setdefault("timestamp", datetime.now().strftime("%H:%M"))
        
    except Exception as e:
        response = {
            "role": "assistant",
            "content": f"Sorry, I encountered an error: {str(e)}",
            "gen_code": "",
            "ex_code": "",
            "last_prompt": prompt,
            "error": str(e),
            "timestamp": datetime.now().strftime("%H:%M")
        }

    st.session_state.responses.append(response)
    st.session_state["last_prompt"] = prompt
    st.session_state["last_model_name"] = model_name
    st.session_state.processing = False
    
    # Clear processing state
    if "current_model" in st.session_state:
        del st.session_state.current_model
    if "current_question" in st.session_state:
        del st.session_state.current_question
    
    st.rerun()

# Close chat container
st.markdown("</div>", unsafe_allow_html=True)

# Minimal auto-scroll - only scroll when processing
if st.session_state.get("processing"):
    st.markdown("<script>scrollToBottom();</script>", unsafe_allow_html=True)

    # Dataset Info Section (matching mockup)
    st.markdown("### Dataset Info")
    st.markdown("""
    <div style='background: #f1f5f9; border-radius: 8px; padding: 1rem; margin-bottom: 1rem;'>
        <h4 style='margin: 0 0 0.5rem 0; color: #1e293b; font-size: 0.9rem;'>PM2.5 Air Quality Data</h4>
        <p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Time Range:</strong> 2022 - 2023</p>
        <p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Locations:</strong> 300+ cities across India</p>
        <p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Records:</strong> 100,000+ measurements</p>
    </div>
    """, unsafe_allow_html=True)