AbhayVG commited on
Commit
2ec6195
·
verified ·
1 Parent(s): a4a9ff9

Delete app.py

Browse files

version deprecated

Files changed (1) hide show
  1. app.py +0 -409
app.py DELETED
@@ -1,409 +0,0 @@
1
- import streamlit as st
2
- import os
3
- import json
4
- import pandas as pd
5
- import random
6
- from os.path import join
7
- from datetime import datetime
8
- from src import (
9
- preprocess_and_load_df,
10
- load_agent,
11
- ask_agent,
12
- decorate_with_code,
13
- show_response,
14
- get_from_user,
15
- load_smart_df,
16
- ask_question,
17
- )
18
- from dotenv import load_dotenv
19
- from langchain_groq.chat_models import ChatGroq
20
- from langchain_google_genai import GoogleGenerativeAI
21
- from streamlit_feedback import streamlit_feedback
22
- from huggingface_hub import HfApi
23
- from datasets import load_dataset, get_dataset_config_info, Dataset
24
- from PIL import Image
25
-
26
- st.set_page_config(layout="wide")
27
-
28
- # Load environment variables : Groq and Hugging Face API keys
29
- load_dotenv()
30
- Groq_Token = os.environ["GROQ_API_KEY"]
31
- hf_token = os.environ["HF_TOKEN"]
32
- gemini_token = os.environ["GEMINI_TOKEN"]
33
- models = {
34
- "llama3": "llama3-70b-8192",
35
- "mixtral": "mixtral-8x7b-32768",
36
- "llama2": "llama2-70b-4096",
37
- "gemma": "gemma-7b-it",
38
- "gemini-pro": "gemini-pro",
39
- }
40
-
41
- self_path = os.path.dirname(os.path.abspath(__file__))
42
-
43
-
44
- # Using HTML and CSS to center the title
45
- st.write(
46
- """
47
- <style>
48
- .title {
49
- text-align: center;
50
- color: #17becf;
51
- }
52
- </style>
53
- """,
54
- unsafe_allow_html=True,
55
- )
56
-
57
- # Displaying the centered title
58
- st.markdown(
59
- "<div style='text-align:center; padding: 20px;'>VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.<br>No coding required—just meaningful insights at your fingertips!</div>",
60
- unsafe_allow_html=True,
61
- )
62
-
63
- # Center-aligned instruction text with bold formatting
64
- st.markdown(
65
- "<div style='text-align:center;'>Choose a query from <b>Select a prompt</b> or type a query in the <b>chat box</b>, select a <b>LLM</b> (Large Language Model), and press enter to generate a response.</div>",
66
- unsafe_allow_html=True,
67
- )
68
- # os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
69
-
70
- # with open(join(self_path, "context1.txt")) as f:
71
- # context = f.read().strip()
72
-
73
- # agent = load_agent(join(self_path, "app_trial_1.csv"), context)
74
- # df = preprocess_and_load_df(join(self_path, "Data.csv"))
75
- # inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
76
- # inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf"
77
- # inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm"
78
-
79
- image_path = "IITGN_Logo.png"
80
-
81
- # Display images and text in three columns with specified ratios
82
- col1, col2, col3 = st.sidebar.columns((1.0, 2, 1.0))
83
- with col2:
84
- st.image(image_path, use_column_width=True)
85
- st.markdown("<h1 class='title'>VayuBuddy</h1>", unsafe_allow_html=True)
86
-
87
-
88
- model_name = st.sidebar.selectbox("Select LLM:", ["llama3", "mixtral", "gemma", "gemini-pro"])
89
-
90
- questions = ["Custom Prompt"]
91
- with open(join(self_path, "questions.txt")) as f:
92
- questions += f.read().split("\n")
93
-
94
- waiting_lines = (
95
- "Thinking...",
96
- "Just a moment...",
97
- "Let me think...",
98
- "Working on it...",
99
- "Processing...",
100
- "Hold on...",
101
- "One moment...",
102
- "On it...",
103
- )
104
-
105
- # agent = load_agent(df, context="", inference_server=inference_server, name=model_name)
106
-
107
- # Initialize chat history
108
- if "responses" not in st.session_state:
109
- st.session_state.responses = []
110
-
111
- ### Old code for feedback
112
- # def push_to_dataset(feedback, comments,output,code,error):
113
- # # Load existing dataset or create a new one if it doesn't exist
114
- # try:
115
- # ds = load_dataset("YashB1/Feedbacks_eoc", split="evaluation")
116
- # except FileNotFoundError:
117
- # # If dataset doesn't exist, create a new one
118
- # ds = Dataset.from_dict({"feedback": [], "comments": [], "error": [], "output": [], "code": []})
119
-
120
- # # Add new feedback to the dataset
121
- # new_data = {"feedback": [feedback], "comments": [comments], "error": [error], "output": [output], "code": [code]} # Convert feedback and comments to lists
122
- # new_data = Dataset.from_dict(new_data)
123
-
124
- # ds = concatenate_datasets([ds, new_data])
125
-
126
- # # Push the updated dataset to Hugging Face Hub
127
- # ds.push_to_hub("YashB1/Feedbacks_eoc", split="evaluation")
128
-
129
-
130
- def upload_feedback():
131
- print("Uploading feedback")
132
- data = {
133
- "feedback": feedback["score"],
134
- "comment": feedback["text"],
135
- "error": error,
136
- "output": output,
137
- "prompt": last_prompt,
138
- "code": code,
139
- }
140
-
141
- # generate a random file name based on current time-stamp: YYYY-MM-DD_HH-MM-SS
142
- random_folder_name = str(datetime.now()).replace(" ", "_").replace(":", "-").replace(".", "-")
143
- print("Random folder:", random_folder_name)
144
- save_path = f"/tmp/vayubuddy_feedback.md"
145
- path_in_repo = f"data/{random_folder_name}/feedback.md"
146
- with open(save_path, "w") as f:
147
- template = f"""Prompt: {last_prompt}
148
-
149
- Output: {output}
150
-
151
- Code:
152
-
153
- ```py
154
- {code}
155
- ```
156
-
157
- Error: {error}
158
-
159
- Feedback: {feedback['score']}
160
-
161
- Comments: {feedback['text']}
162
- """
163
-
164
- print(template, file=f)
165
-
166
- api = HfApi(token=hf_token)
167
- api.upload_file(
168
- path_or_fileobj=save_path,
169
- path_in_repo=path_in_repo,
170
- repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
171
- repo_type="dataset",
172
- )
173
- if status["is_image"]:
174
- api.upload_file(
175
- path_or_fileobj=output,
176
- path_in_repo=f"data/{random_folder_name}/plot.png",
177
- repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
178
- repo_type="dataset",
179
- )
180
-
181
- print("Feedback uploaded successfully!")
182
-
183
-
184
- # Display chat responses from history on app rerun
185
- print("#" * 10)
186
- for response_id, response in enumerate(st.session_state.responses):
187
- status = show_response(st, response)
188
- if response["role"] == "assistant":
189
- feedback_key = f"feedback_{int(response_id/2)}"
190
- print("response_id", response_id, "feedback_key", feedback_key)
191
-
192
- error = response["error"]
193
- output = response["content"]
194
- last_prompt = response["last_prompt"]
195
- code = response["gen_code"]
196
-
197
- if "feedback" in st.session_state.responses[response_id]:
198
- st.write("Feedback:", st.session_state.responses[response_id]["feedback"])
199
- else:
200
- ## !!! This does on work on Safari !!!
201
- # feedback = streamlit_feedback(feedback_type="thumbs",
202
- # optional_text_label="[Optional] Please provide extra information", on_submit=upload_feedback, key=feedback_key)
203
-
204
- # Display thumbs up/down buttons for feedback
205
- thumbs = st.radio("We would appreciate your feedback!", ("👍", "👎"), index=None, key=feedback_key)
206
-
207
- if thumbs:
208
- # Text input for comments
209
- comments = st.text_area("[Optional] Please provide extra information", key=feedback_key + "_comments")
210
- feedback = {"score": thumbs, "text": comments}
211
- if st.button("Submit", on_click=upload_feedback, key=feedback_key + "_submit"):
212
- st.session_state.responses[response_id]["feedback"] = feedback
213
- st.success("Feedback uploaded successfully!")
214
-
215
-
216
- print("#" * 10)
217
-
218
- show = True
219
- prompt = st.sidebar.selectbox("Select a Prompt:", questions, key="prompt_key")
220
- if prompt == "Custom Prompt":
221
- show = False
222
- # React to user input
223
- prompt = st.chat_input("Ask me anything about air quality!", key=1000)
224
- if prompt:
225
- show = True
226
- else:
227
- # placeholder for chat input
228
- st.chat_input(
229
- "Select 'Select a Prompt' -> 'Custom Prompt' in the sidebar to ask your own questions.", key=1000, disabled=True
230
- )
231
-
232
- if "last_prompt" in st.session_state:
233
- last_prompt = st.session_state["last_prompt"]
234
- last_model_name = st.session_state["last_model_name"]
235
- if (prompt == last_prompt) and (model_name == last_model_name):
236
- show = False
237
-
238
- if prompt:
239
- st.sidebar.info("Select 'Custom Prompt' to ask your own questions.")
240
-
241
- if show:
242
- # Add user input to chat history
243
- user_response = get_from_user(prompt)
244
- st.session_state.responses.append(user_response)
245
-
246
- # select random waiting line
247
- with st.spinner(random.choice(waiting_lines)):
248
- ran = False
249
- for i in range(1):
250
- print(f"Attempt {i+1}")
251
- if model_name == "gemini-pro":
252
- llm = GoogleGenerativeAI(
253
- model=models[model_name], google_api_key=os.getenv("GEMINI_TOKEN"), temperature=0
254
- )
255
- else:
256
- llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0)
257
-
258
- df_check = pd.read_csv("Data.csv")
259
- df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
260
- df_check = df_check.head(5)
261
-
262
- new_line = "\n"
263
-
264
- parameters = {"font.size": 12, "figure.dpi": 600}
265
-
266
- template = f"""```python
267
- import pandas as pd
268
- import matplotlib.pyplot as plt
269
-
270
- plt.rcParams.update({parameters})
271
-
272
- df = pd.read_csv("Data.csv")
273
- df["Timestamp"] = pd.to_datetime(df["Timestamp"])
274
-
275
- import geopandas as gpd
276
- india = gpd.read_file("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c0a36/india_states.geojson")
277
- india.loc[india['ST_NM'].isin(['Ladakh', 'Jammu & Kashmir']), 'ST_NM'] = 'Jammu and Kashmir'
278
- import uuid
279
- # df.dtypes
280
- {new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
281
-
282
- {new_line.join(['# '+line for line in prompt.strip().split(new_line)])}
283
- """
284
- with open("system_prompt.txt") as f:
285
- system_prompt = f.read().strip()
286
- query = f"""{system_prompt}
287
-
288
- Complete the following code.
289
-
290
- {template}
291
-
292
- """
293
-
294
- answer = None
295
- code = None
296
- error = None
297
- try:
298
- if model_name == "gemini-pro":
299
- answer = llm.invoke(query)
300
- else:
301
- answer = llm.invoke(query).content
302
- code = f"""
303
- {template.split("```python")[1].split("```")[0]}
304
- {answer.split("```python")[1].split("```")[0]}
305
- """
306
- # update variable `answer` when code is executed
307
- exec(code)
308
- ran = True
309
- except Exception as e:
310
- error = e
311
- if code is not None:
312
- answer = f"Error executing the code...\n\n{e}"
313
-
314
- if type(answer) != str:
315
- answer = f"!!!Faced an error while working on your query. Please try again!!!"
316
-
317
- response = {
318
- "role": "assistant",
319
- "content": answer,
320
- "gen_code": code,
321
- "ex_code": code,
322
- "last_prompt": prompt,
323
- "error": error,
324
- }
325
-
326
- try:
327
- print("Trying to open image", answer)
328
- img = Image.open(answer)
329
- print("Image opened")
330
- image = answer
331
- answer = None
332
- except:
333
- image = None
334
-
335
- item = {
336
- "prompt": prompt,
337
- "code": code,
338
- "answer": answer,
339
- "error": error,
340
- "model": model_name,
341
- "image": image,
342
- }
343
-
344
- # Update to HuggingFace dataset
345
- dataset_config = get_dataset_config_info("SustainabilityLabIITGN/VayuBuddy_logs", token=hf_token)
346
- splits = dataset_config.splits
347
- last_split = list(splits.keys())[-1]
348
- last_split_size = splits[last_split].num_examples
349
-
350
- ds = load_dataset("SustainabilityLabIITGN/VayuBuddy_logs", token=hf_token, split=last_split)
351
- if last_split_size >= 100:
352
- current_split = str(int(last_split) + 1)
353
- ds = Dataset.from_list([item], features=ds.features)
354
- else:
355
- current_split = last_split
356
- ds = ds.add_item(item)
357
-
358
- ds.push_to_hub("SustainabilityLabIITGN/VayuBuddy_logs", split=current_split, token=hf_token)
359
-
360
- # Get response from agent
361
- # response = ask_question(model_name=model_name, question=prompt)
362
- # response = ask_agent(agent, prompt)
363
-
364
- if ran:
365
- break
366
-
367
- # Append agent response to chat history
368
- st.session_state.responses.append(response)
369
-
370
- st.session_state["last_prompt"] = prompt
371
- st.session_state["last_model_name"] = model_name
372
- st.rerun()
373
-
374
-
375
- # contact details
376
- contact_details = """
377
- **Feel free to reach out to us:**
378
- - [Zeel B Patel](https://patel-zeel.github.io/)
379
- (PhD Student, IIT Gandhinagar)
380
- - Vinayak Rana
381
- (Developer, IIT Gandhinagar)
382
- - Nitish Sharma
383
- (Developer, Independent Contributor)
384
- - Yash J Bachwana
385
- (Developer, IIT Gandhinagar)
386
- - [Nipun Batra](https://nipunbatra.github.io/)
387
- (Faculty, IIT Gandhinagar)
388
- """
389
-
390
-
391
- # Display contact details with message
392
- st.sidebar.markdown("<hr>", unsafe_allow_html=True)
393
- st.sidebar.markdown(contact_details, unsafe_allow_html=True)
394
-
395
-
396
- st.markdown(
397
- """
398
- <style>
399
- .sidebar .sidebar-content {
400
- position: sticky;
401
- top: 0;
402
- height: 100vh;
403
- overflow-y: auto;
404
- overflow-x: hidden;
405
- }
406
- </style>
407
- """,
408
- unsafe_allow_html=True,
409
- )