Last commit not found
import streamlit as st | |
import os | |
import json | |
import pandas as pd | |
import random | |
from os.path import join | |
from datetime import datetime | |
from src import preprocess_and_load_df, load_agent, ask_agent, decorate_with_code, show_response, get_from_user, load_smart_df, ask_question | |
from dotenv import load_dotenv | |
from langchain_groq.chat_models import ChatGroq | |
from streamlit_feedback import streamlit_feedback | |
from huggingface_hub import HfApi | |
st.set_page_config(layout="wide") | |
sticky_css = """ | |
<style> | |
.sidebar .sidebar-content { | |
position: sticky; | |
top: 0; | |
} | |
</style> | |
""" | |
# Inject the CSS style into the Streamlit app | |
st.markdown(sticky_css, unsafe_allow_html=True) | |
load_dotenv() | |
Groq_Token = os.environ["GROQ_API_KEY"] | |
hf_token = os.environ["HF_TOKEN"] | |
models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it"} | |
shape_file = os.getenv("SHAPE_FILE") | |
self_path = os.path.dirname(os.path.abspath(__file__)) | |
# Using HTML and CSS to center the title | |
st.write( | |
""" | |
<style> | |
.title { | |
text-align: center; | |
color: #17becf; | |
} | |
""", | |
unsafe_allow_html=True, | |
) | |
# Displaying the centered title | |
st.markdown("<h2 class='title'>VayuBuddy</h2>", unsafe_allow_html=True) | |
st.markdown("<div style='text-align:center; padding: 20px;'>VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.<br>No coding required—just meaningful insights at your fingertips!</div>", unsafe_allow_html=True) | |
# Center-aligned instruction text with bold formatting | |
st.markdown("<div style='text-align:center;'>Choose a query from <b>Select a prompt</b> or type a query in the <b>chat box</b>, select a <b>LLM</b> (Large Language Model), and press enter to generate a response.</div>", unsafe_allow_html=True) | |
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2" | |
# with open(join(self_path, "context1.txt")) as f: | |
# context = f.read().strip() | |
# agent = load_agent(join(self_path, "app_trial_1.csv"), context) | |
# df = preprocess_and_load_df(join(self_path, "Data.csv")) | |
# inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2" | |
# inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf" | |
# inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm" | |
model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "gemma"]) | |
questions = ['Custom Prompt'] | |
with open(join(self_path, "questions.txt")) as f: | |
questions += f.read().split("\n") | |
waiting_lines = ("Thinking...", "Just a moment...", "Let me think...", "Working on it...", "Processing...", "Hold on...", "One moment...", "On it...") | |
# agent = load_agent(df, context="", inference_server=inference_server, name=model_name) | |
# Initialize chat history | |
if "responses" not in st.session_state: | |
st.session_state.responses = [] | |
### Old code for feedback | |
# def push_to_dataset(feedback, comments,output,code,error): | |
# # Load existing dataset or create a new one if it doesn't exist | |
# try: | |
# ds = load_dataset("YashB1/Feedbacks_eoc", split="evaluation") | |
# except FileNotFoundError: | |
# # If dataset doesn't exist, create a new one | |
# ds = Dataset.from_dict({"feedback": [], "comments": [], "error": [], "output": [], "code": []}) | |
# # Add new feedback to the dataset | |
# new_data = {"feedback": [feedback], "comments": [comments], "error": [error], "output": [output], "code": [code]} # Convert feedback and comments to lists | |
# new_data = Dataset.from_dict(new_data) | |
# ds = concatenate_datasets([ds, new_data]) | |
# # Push the updated dataset to Hugging Face Hub | |
# ds.push_to_hub("YashB1/Feedbacks_eoc", split="evaluation") | |
def upload_feedback(): | |
print("Uploading feedback") | |
data = { | |
"feedback": feedback['score'], | |
"comment": feedback['text'], "error": error, "output": output, "prompt": last_prompt, "code": code} | |
# generate a random file name based on current time-stamp: YYYY-MM-DD_HH-MM-SS | |
random_folder_name = str(datetime.now()).replace(" ", "_").replace(":", "-").replace(".", "-") | |
print("Random folder:", random_folder_name) | |
save_path = f"/tmp/vayubuddy_feedback.md" | |
path_in_repo = f"data/{random_folder_name}/feedback.md" | |
with open(save_path, "w") as f: | |
template = f"""Prompt: {last_prompt} | |
Output: {output} | |
Code: | |
```py | |
{code} | |
``` | |
Error: {error} | |
Feedback: {feedback['score']} | |
Comments: {feedback['text']} | |
""" | |
print(template, file=f) | |
api = HfApi(token=hf_token) | |
api.upload_file( | |
path_or_fileobj=save_path, | |
path_in_repo=path_in_repo, | |
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback", | |
repo_type="dataset", | |
) | |
if status['is_image']: | |
api.upload_file( | |
path_or_fileobj=output, | |
path_in_repo=f"data/{random_folder_name}/plot.png", | |
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback", | |
repo_type="dataset", | |
) | |
print("Feedback uploaded successfully!") | |
# Display chat responses from history on app rerun | |
print("#"*10) | |
for response_id, response in enumerate(st.session_state.responses): | |
status = show_response(st, response) | |
if response["role"] == "assistant": | |
feedback_key = f"feedback_{int(response_id/2)}" | |
print("response_id", response_id, "feedback_key", feedback_key) | |
error = response["error"] | |
output = response["content"] | |
last_prompt = response["last_prompt"] | |
code = response["gen_code"] | |
if "feedback" in st.session_state.responses[response_id]: | |
st.write("Feedback:", st.session_state.responses[response_id]["feedback"]) | |
else: | |
## !!! This does on work on Safari !!! | |
# feedback = streamlit_feedback(feedback_type="thumbs", | |
# optional_text_label="[Optional] Please provide extra information", on_submit=upload_feedback, key=feedback_key) | |
# Display thumbs up/down buttons for feedback | |
thumbs = st.radio("We would appreciate your feedback!", ('👍', '👎'), index=None, key=feedback_key) | |
if thumbs: | |
# Text input for comments | |
comments = st.text_area("[Optional] Please provide extra information", key=feedback_key+"_comments") | |
feedback = {"score": thumbs, "text": comments} | |
if st.button("Submit", on_click=upload_feedback, key=feedback_key+"_submit"): | |
st.session_state.responses[response_id]["feedback"] = feedback | |
st.success("Feedback uploaded successfully!") | |
print("#"*10) | |
show = True | |
prompt = st.sidebar.selectbox("Select a Prompt:", questions, key="prompt_key") | |
if prompt == 'Custom Prompt': | |
show = False | |
# React to user input | |
prompt = st.chat_input("Ask me anything about air quality!", key=1000) | |
if prompt : | |
show = True | |
if "last_prompt" in st.session_state: | |
last_prompt = st.session_state["last_prompt"] | |
last_model_name = st.session_state["last_model_name"] | |
if (prompt == last_prompt) and (model_name == last_model_name): | |
show = False | |
if prompt: | |
st.sidebar.info("Select 'Custom Prompt' to ask your own questions.") | |
if show: | |
# Add user input to chat history | |
user_response = get_from_user(prompt) | |
st.session_state.responses.append(user_response) | |
# select random waiting line | |
with st.spinner(random.choice(waiting_lines)): | |
ran = False | |
for i in range(1): | |
print(f"Attempt {i+1}") | |
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0) | |
df_check = pd.read_csv("Data.csv") | |
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"]) | |
df_check = df_check.head(5) | |
new_line = "\n" | |
parameters = {"font.size": 12,"figure.dpi": 600} | |
template = f"""```python | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
plt.rcParams.update({parameters}) | |
df = pd.read_csv("Data.csv") | |
df["Timestamp"] = pd.to_datetime(df["Timestamp"]) | |
import geopandas as gpd | |
india = gpd.read_file(f"{shape_file}") | |
india.loc[india['ST_NM'].isin(['Ladakh', 'Jammu & Kashmir']), 'ST_NM'] = 'Jammu and Kashmir' | |
import uuid | |
# df.dtypes | |
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))} | |
# {prompt.strip()} | |
# <your code here> | |
``` | |
""" | |
query = f"""I have a pandas dataframe data of PM2.5 and PM10. | |
* The columns are 'Timestamp', 'station', 'PM2.5', 'PM10', 'address', 'city', 'latitude', 'longitude',and 'state'. | |
* Frequency of data is daily. | |
* `pollution` generally means `PM2.5`. | |
* You already have df, so don't read the csv file | |
* Don't print anything, but save result in a variable `answer` and make it global. | |
* Unless explicitly mentioned, don't consider the result as a plot. | |
* PM2.5 guidelines: India: 60, WHO: 15. | |
* PM10 guidelines: India: 100, WHO: 50. | |
* If result is a plot, show the India and WHO guidelines in the plot. | |
* If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`. Use uuid to save the plot. | |
* If result is a plot, rotate x-axis tick labels by 45 degrees, | |
* If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'` | |
* I have a geopandas.geodataframe india containining the coordinates required to plot Indian Map with states. | |
* If the query asks you to plot on India Map, use that geodataframe to plot and then add more points as per the requirements using the similar code as follows : v = ax.scatter(df['longitude'], df['latitude']). If the colorbar is required, use the following code : plt.colorbar(v) | |
* If the query asks you to plot on India Map plot the India Map in Beige color | |
* Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation. | |
* Whenever you're reporting a floating point number, round it to 2 decimal places. | |
* Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³` | |
Complete the following code. | |
{template} | |
""" | |
answer = None | |
code = None | |
error = None | |
try: | |
answer = llm.invoke(query) | |
code = f""" | |
{template.split("```python")[1].split("```")[0]} | |
{answer.content.split("```python")[1].split("```")[0]} | |
""" | |
# update variable `answer` when code is executed | |
exec(code) | |
ran = True | |
except Exception as e: | |
error = e | |
if code is not None: | |
answer = f"!!!Faced an error while working on your query. Please try again!!!" | |
if type(answer) != str: | |
answer = f"!!!Faced an error while working on your query. Please try again!!!" | |
response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "error": error} | |
# Get response from agent | |
# response = ask_question(model_name=model_name, question=prompt) | |
# response = ask_agent(agent, prompt) | |
if ran: | |
break | |
# Append agent response to chat history | |
st.session_state.responses.append(response) | |
st.session_state['last_prompt'] = prompt | |
st.session_state['last_model_name'] = model_name | |
st.rerun() | |
# contact details | |
contact_details = """ | |
**Feel free to reach out to us:** | |
- [Yash J Bachwana](mailto:[email protected]) | |
(Lead Developer, IIT Gandhinagar) | |
- [Zeel B Patel](https://patel-zeel.github.io/) | |
(PhD Student, IIT Gandhinagar) | |
- [Nipun Batra](https://nipunbatra.github.io/) | |
(Faculty, IIT Gandhinagar) | |
""" | |
for _ in range(9): | |
st.sidebar.markdown(" ") | |
# Display contact details with message | |
st.sidebar.markdown("<hr>", unsafe_allow_html=True) | |
st.sidebar.markdown(contact_details, unsafe_allow_html=True) |