VayuBuddy / app.py
Zeel's picture
push the changes
7612318
raw
history blame
13.7 kB
import streamlit as st
import os
import json
import pandas as pd
import random
from os.path import join
from datetime import datetime
from src import (
preprocess_and_load_df,
load_agent,
ask_agent,
decorate_with_code,
show_response,
get_from_user,
load_smart_df,
ask_question,
)
from dotenv import load_dotenv
from langchain_groq.chat_models import ChatGroq
from langchain_google_genai import GoogleGenerativeAI
from streamlit_feedback import streamlit_feedback
from huggingface_hub import HfApi
from datasets import load_dataset, get_dataset_config_info, Dataset
from PIL import Image
st.set_page_config(layout="wide")
# Load environment variables : Groq and Hugging Face API keys
load_dotenv()
Groq_Token = os.environ["GROQ_API_KEY"]
hf_token = os.environ["HF_TOKEN"]
gemini_token = os.environ["GEMINI_TOKEN"]
models = {
"llama3": "llama3-70b-8192",
"mixtral": "mixtral-8x7b-32768",
"llama2": "llama2-70b-4096",
"gemma": "gemma-7b-it",
"gemini-pro": "gemini-pro",
}
self_path = os.path.dirname(os.path.abspath(__file__))
# Using HTML and CSS to center the title
st.write(
"""
<style>
.title {
text-align: center;
color: #17becf;
}
</style>
""",
unsafe_allow_html=True,
)
# Displaying the centered title
st.markdown(
"<div style='text-align:center; padding: 20px;'>VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.<br>No coding required—just meaningful insights at your fingertips!</div>",
unsafe_allow_html=True,
)
# Center-aligned instruction text with bold formatting
st.markdown(
"<div style='text-align:center;'>Choose a query from <b>Select a prompt</b> or type a query in the <b>chat box</b>, select a <b>LLM</b> (Large Language Model), and press enter to generate a response.</div>",
unsafe_allow_html=True,
)
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
# with open(join(self_path, "context1.txt")) as f:
# context = f.read().strip()
# agent = load_agent(join(self_path, "app_trial_1.csv"), context)
# df = preprocess_and_load_df(join(self_path, "Data.csv"))
# inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
# inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf"
# inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm"
image_path = "IITGN_Logo.png"
# Display images and text in three columns with specified ratios
col1, col2, col3 = st.sidebar.columns((1.0, 2, 1.0))
with col2:
st.image(image_path, use_column_width=True)
st.markdown("<h1 class='title'>VayuBuddy</h1>", unsafe_allow_html=True)
model_name = st.sidebar.selectbox("Select LLM:", ["llama3", "mixtral", "gemma", "gemini-pro"])
questions = ["Custom Prompt"]
with open(join(self_path, "questions.txt")) as f:
questions += f.read().split("\n")
waiting_lines = (
"Thinking...",
"Just a moment...",
"Let me think...",
"Working on it...",
"Processing...",
"Hold on...",
"One moment...",
"On it...",
)
# agent = load_agent(df, context="", inference_server=inference_server, name=model_name)
# Initialize chat history
if "responses" not in st.session_state:
st.session_state.responses = []
### Old code for feedback
# def push_to_dataset(feedback, comments,output,code,error):
# # Load existing dataset or create a new one if it doesn't exist
# try:
# ds = load_dataset("YashB1/Feedbacks_eoc", split="evaluation")
# except FileNotFoundError:
# # If dataset doesn't exist, create a new one
# ds = Dataset.from_dict({"feedback": [], "comments": [], "error": [], "output": [], "code": []})
# # Add new feedback to the dataset
# new_data = {"feedback": [feedback], "comments": [comments], "error": [error], "output": [output], "code": [code]} # Convert feedback and comments to lists
# new_data = Dataset.from_dict(new_data)
# ds = concatenate_datasets([ds, new_data])
# # Push the updated dataset to Hugging Face Hub
# ds.push_to_hub("YashB1/Feedbacks_eoc", split="evaluation")
def upload_feedback():
print("Uploading feedback")
data = {
"feedback": feedback["score"],
"comment": feedback["text"],
"error": error,
"output": output,
"prompt": last_prompt,
"code": code,
}
# generate a random file name based on current time-stamp: YYYY-MM-DD_HH-MM-SS
random_folder_name = str(datetime.now()).replace(" ", "_").replace(":", "-").replace(".", "-")
print("Random folder:", random_folder_name)
save_path = f"/tmp/vayubuddy_feedback.md"
path_in_repo = f"data/{random_folder_name}/feedback.md"
with open(save_path, "w") as f:
template = f"""Prompt: {last_prompt}
Output: {output}
Code:
```py
{code}
```
Error: {error}
Feedback: {feedback['score']}
Comments: {feedback['text']}
"""
print(template, file=f)
api = HfApi(token=hf_token)
api.upload_file(
path_or_fileobj=save_path,
path_in_repo=path_in_repo,
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
if status["is_image"]:
api.upload_file(
path_or_fileobj=output,
path_in_repo=f"data/{random_folder_name}/plot.png",
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
print("Feedback uploaded successfully!")
# Display chat responses from history on app rerun
print("#" * 10)
for response_id, response in enumerate(st.session_state.responses):
status = show_response(st, response)
if response["role"] == "assistant":
feedback_key = f"feedback_{int(response_id/2)}"
print("response_id", response_id, "feedback_key", feedback_key)
error = response["error"]
output = response["content"]
last_prompt = response["last_prompt"]
code = response["gen_code"]
if "feedback" in st.session_state.responses[response_id]:
st.write("Feedback:", st.session_state.responses[response_id]["feedback"])
else:
## !!! This does on work on Safari !!!
# feedback = streamlit_feedback(feedback_type="thumbs",
# optional_text_label="[Optional] Please provide extra information", on_submit=upload_feedback, key=feedback_key)
# Display thumbs up/down buttons for feedback
thumbs = st.radio("We would appreciate your feedback!", ("👍", "👎"), index=None, key=feedback_key)
if thumbs:
# Text input for comments
comments = st.text_area("[Optional] Please provide extra information", key=feedback_key + "_comments")
feedback = {"score": thumbs, "text": comments}
if st.button("Submit", on_click=upload_feedback, key=feedback_key + "_submit"):
st.session_state.responses[response_id]["feedback"] = feedback
st.success("Feedback uploaded successfully!")
print("#" * 10)
show = True
prompt = st.sidebar.selectbox("Select a Prompt:", questions, key="prompt_key")
if prompt == "Custom Prompt":
show = False
# React to user input
prompt = st.chat_input("Ask me anything about air quality!", key=1000)
if prompt:
show = True
else:
# placeholder for chat input
st.chat_input(
"Select 'Select a Prompt' -> 'Custom Prompt' in the sidebar to ask your own questions.", key=1000, disabled=True
)
if "last_prompt" in st.session_state:
last_prompt = st.session_state["last_prompt"]
last_model_name = st.session_state["last_model_name"]
if (prompt == last_prompt) and (model_name == last_model_name):
show = False
if prompt:
st.sidebar.info("Select 'Custom Prompt' to ask your own questions.")
if show:
# Add user input to chat history
user_response = get_from_user(prompt)
st.session_state.responses.append(user_response)
# select random waiting line
with st.spinner(random.choice(waiting_lines)):
ran = False
for i in range(1):
print(f"Attempt {i+1}")
if model_name == "gemini-pro":
llm = GoogleGenerativeAI(
model=models[model_name], google_api_key=os.getenv("GEMINI_TOKEN"), temperature=0
)
else:
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0)
df_check = pd.read_csv("Data.csv")
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
df_check = df_check.head(5)
new_line = "\n"
parameters = {"font.size": 12, "figure.dpi": 600}
template = f"""```python
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams.update({parameters})
df = pd.read_csv("Data.csv")
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
import geopandas as gpd
india = gpd.read_file("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c0a36/india_states.geojson")
india.loc[india['ST_NM'].isin(['Ladakh', 'Jammu & Kashmir']), 'ST_NM'] = 'Jammu and Kashmir'
import uuid
# df.dtypes
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
{new_line.join(['# '+line for line in prompt.strip().split(new_line)])}
"""
with open("system_prompt.txt") as f:
system_prompt = f.read().strip()
query = f"""{system_prompt}
Complete the following code.
{template}
"""
answer = None
code = None
error = None
try:
if model_name == "gemini-pro":
answer = llm.invoke(query)
else:
answer = llm.invoke(query).content
code = f"""
{template.split("```python")[1].split("```")[0]}
{answer.split("```python")[1].split("```")[0]}
"""
# update variable `answer` when code is executed
exec(code)
ran = True
except Exception as e:
error = e
if code is not None:
answer = f"Error executing the code...\n\n{e}"
if type(answer) != str:
answer = f"!!!Faced an error while working on your query. Please try again!!!"
response = {
"role": "assistant",
"content": answer,
"gen_code": code,
"ex_code": code,
"last_prompt": prompt,
"error": error,
}
try:
print("Trying to open image", answer)
img = Image.open(answer)
print("Image opened")
image = answer
answer = None
except:
image = None
item = {
"prompt": prompt,
"code": code,
"answer": answer,
"error": error,
"model": model_name,
"image": image,
}
# Update to HuggingFace dataset
dataset_config = get_dataset_config_info("SustainabilityLabIITGN/VayuBuddy_logs", token=hf_token)
splits = dataset_config.splits
last_split = list(splits.keys())[-1]
last_split_size = splits[last_split].num_examples
ds = load_dataset("SustainabilityLabIITGN/VayuBuddy_logs", token=hf_token, split=last_split)
if last_split_size >= 100:
current_split = str(int(last_split) + 1)
ds = Dataset.from_list([item], features=ds.features)
else:
current_split = last_split
ds = ds.add_item(item)
ds.push_to_hub("SustainabilityLabIITGN/VayuBuddy_logs", split=current_split, token=hf_token)
# Get response from agent
# response = ask_question(model_name=model_name, question=prompt)
# response = ask_agent(agent, prompt)
if ran:
break
# Append agent response to chat history
st.session_state.responses.append(response)
st.session_state["last_prompt"] = prompt
st.session_state["last_model_name"] = model_name
st.rerun()
# contact details
contact_details = """
**Feel free to reach out to us:**
- [Zeel B Patel](https://patel-zeel.github.io/)
(PhD Student, IIT Gandhinagar)
- Vinayak Rana
(Developer, IIT Gandhinagar)
- Nitish Sharma
(Developer, Independent Contributor)
- Yash J Bachwana
(Developer, IIT Gandhinagar)
- [Nipun Batra](https://nipunbatra.github.io/)
(Faculty, IIT Gandhinagar)
"""
# Display contact details with message
st.sidebar.markdown("<hr>", unsafe_allow_html=True)
st.sidebar.markdown(contact_details, unsafe_allow_html=True)
st.markdown(
"""
<style>
.sidebar .sidebar-content {
position: sticky;
top: 0;
height: 100vh;
overflow-y: auto;
overflow-x: hidden;
}
</style>
""",
unsafe_allow_html=True,
)