File size: 13,716 Bytes
c114fc1 18bcedb c114fc1 18bcedb 7612318 c114fc1 339d432 d7dc7e0 18bcedb 7612318 a33d4cf 61ffd62 60e8286 738f5e4 18bcedb c114fc1 18bcedb 8faaeb8 7612318 c114fc1 3eacb93 c114fc1 9b22b06 c114fc1 7612318 c114fc1 25414e5 7612318 c114fc1 a642583 151e051 a642583 7612318 0689f85 151e051 d7dc7e0 7612318 18bcedb d7dc7e0 7612318 c114fc1 18bcedb c114fc1 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb c114fc1 18bcedb c114fc1 18bcedb c114fc1 18bcedb d7dc7e0 18bcedb d7dc7e0 18bcedb d7dc7e0 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 151e051 7612318 18bcedb 8faaeb8 7612318 8faaeb8 18bcedb 7612318 18bcedb c114fc1 76dd8fd 07bfeb2 c114fc1 25414e5 151e051 dafc314 35d6de6 c114fc1 66b4d7d c114fc1 c7cd7b8 ee98be0 c114fc1 ee98be0 7612318 18bcedb 8faaeb8 18bcedb 8faaeb8 18bcedb f9b3adf 7612318 18bcedb 25414e5 7612318 a33d4cf 7612318 a33d4cf 7612318 a33d4cf 7612318 42617a2 a33d4cf 25414e5 18bcedb 7612318 18bcedb 7612318 18bcedb 7612318 18bcedb 846b42b 7612318 a33d4cf 846b42b 18bcedb 846b42b d7dc7e0 18bcedb dc47a9a 7612318 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import streamlit as st
import os
import json
import pandas as pd
import random
from os.path import join
from datetime import datetime
from src import (
preprocess_and_load_df,
load_agent,
ask_agent,
decorate_with_code,
show_response,
get_from_user,
load_smart_df,
ask_question,
)
from dotenv import load_dotenv
from langchain_groq.chat_models import ChatGroq
from langchain_google_genai import GoogleGenerativeAI
from streamlit_feedback import streamlit_feedback
from huggingface_hub import HfApi
from datasets import load_dataset, get_dataset_config_info, Dataset
from PIL import Image
st.set_page_config(layout="wide")
# Load environment variables : Groq and Hugging Face API keys
load_dotenv()
Groq_Token = os.environ["GROQ_API_KEY"]
hf_token = os.environ["HF_TOKEN"]
gemini_token = os.environ["GEMINI_TOKEN"]
models = {
"llama3": "llama3-70b-8192",
"mixtral": "mixtral-8x7b-32768",
"llama2": "llama2-70b-4096",
"gemma": "gemma-7b-it",
"gemini-pro": "gemini-pro",
}
self_path = os.path.dirname(os.path.abspath(__file__))
# Using HTML and CSS to center the title
st.write(
"""
<style>
.title {
text-align: center;
color: #17becf;
}
</style>
""",
unsafe_allow_html=True,
)
# Displaying the centered title
st.markdown(
"<div style='text-align:center; padding: 20px;'>VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.<br>No coding required—just meaningful insights at your fingertips!</div>",
unsafe_allow_html=True,
)
# Center-aligned instruction text with bold formatting
st.markdown(
"<div style='text-align:center;'>Choose a query from <b>Select a prompt</b> or type a query in the <b>chat box</b>, select a <b>LLM</b> (Large Language Model), and press enter to generate a response.</div>",
unsafe_allow_html=True,
)
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
# with open(join(self_path, "context1.txt")) as f:
# context = f.read().strip()
# agent = load_agent(join(self_path, "app_trial_1.csv"), context)
# df = preprocess_and_load_df(join(self_path, "Data.csv"))
# inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
# inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf"
# inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm"
image_path = "IITGN_Logo.png"
# Display images and text in three columns with specified ratios
col1, col2, col3 = st.sidebar.columns((1.0, 2, 1.0))
with col2:
st.image(image_path, use_column_width=True)
st.markdown("<h1 class='title'>VayuBuddy</h1>", unsafe_allow_html=True)
model_name = st.sidebar.selectbox("Select LLM:", ["llama3", "mixtral", "gemma", "gemini-pro"])
questions = ["Custom Prompt"]
with open(join(self_path, "questions.txt")) as f:
questions += f.read().split("\n")
waiting_lines = (
"Thinking...",
"Just a moment...",
"Let me think...",
"Working on it...",
"Processing...",
"Hold on...",
"One moment...",
"On it...",
)
# agent = load_agent(df, context="", inference_server=inference_server, name=model_name)
# Initialize chat history
if "responses" not in st.session_state:
st.session_state.responses = []
### Old code for feedback
# def push_to_dataset(feedback, comments,output,code,error):
# # Load existing dataset or create a new one if it doesn't exist
# try:
# ds = load_dataset("YashB1/Feedbacks_eoc", split="evaluation")
# except FileNotFoundError:
# # If dataset doesn't exist, create a new one
# ds = Dataset.from_dict({"feedback": [], "comments": [], "error": [], "output": [], "code": []})
# # Add new feedback to the dataset
# new_data = {"feedback": [feedback], "comments": [comments], "error": [error], "output": [output], "code": [code]} # Convert feedback and comments to lists
# new_data = Dataset.from_dict(new_data)
# ds = concatenate_datasets([ds, new_data])
# # Push the updated dataset to Hugging Face Hub
# ds.push_to_hub("YashB1/Feedbacks_eoc", split="evaluation")
def upload_feedback():
print("Uploading feedback")
data = {
"feedback": feedback["score"],
"comment": feedback["text"],
"error": error,
"output": output,
"prompt": last_prompt,
"code": code,
}
# generate a random file name based on current time-stamp: YYYY-MM-DD_HH-MM-SS
random_folder_name = str(datetime.now()).replace(" ", "_").replace(":", "-").replace(".", "-")
print("Random folder:", random_folder_name)
save_path = f"/tmp/vayubuddy_feedback.md"
path_in_repo = f"data/{random_folder_name}/feedback.md"
with open(save_path, "w") as f:
template = f"""Prompt: {last_prompt}
Output: {output}
Code:
```py
{code}
```
Error: {error}
Feedback: {feedback['score']}
Comments: {feedback['text']}
"""
print(template, file=f)
api = HfApi(token=hf_token)
api.upload_file(
path_or_fileobj=save_path,
path_in_repo=path_in_repo,
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
if status["is_image"]:
api.upload_file(
path_or_fileobj=output,
path_in_repo=f"data/{random_folder_name}/plot.png",
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
print("Feedback uploaded successfully!")
# Display chat responses from history on app rerun
print("#" * 10)
for response_id, response in enumerate(st.session_state.responses):
status = show_response(st, response)
if response["role"] == "assistant":
feedback_key = f"feedback_{int(response_id/2)}"
print("response_id", response_id, "feedback_key", feedback_key)
error = response["error"]
output = response["content"]
last_prompt = response["last_prompt"]
code = response["gen_code"]
if "feedback" in st.session_state.responses[response_id]:
st.write("Feedback:", st.session_state.responses[response_id]["feedback"])
else:
## !!! This does on work on Safari !!!
# feedback = streamlit_feedback(feedback_type="thumbs",
# optional_text_label="[Optional] Please provide extra information", on_submit=upload_feedback, key=feedback_key)
# Display thumbs up/down buttons for feedback
thumbs = st.radio("We would appreciate your feedback!", ("👍", "👎"), index=None, key=feedback_key)
if thumbs:
# Text input for comments
comments = st.text_area("[Optional] Please provide extra information", key=feedback_key + "_comments")
feedback = {"score": thumbs, "text": comments}
if st.button("Submit", on_click=upload_feedback, key=feedback_key + "_submit"):
st.session_state.responses[response_id]["feedback"] = feedback
st.success("Feedback uploaded successfully!")
print("#" * 10)
show = True
prompt = st.sidebar.selectbox("Select a Prompt:", questions, key="prompt_key")
if prompt == "Custom Prompt":
show = False
# React to user input
prompt = st.chat_input("Ask me anything about air quality!", key=1000)
if prompt:
show = True
else:
# placeholder for chat input
st.chat_input(
"Select 'Select a Prompt' -> 'Custom Prompt' in the sidebar to ask your own questions.", key=1000, disabled=True
)
if "last_prompt" in st.session_state:
last_prompt = st.session_state["last_prompt"]
last_model_name = st.session_state["last_model_name"]
if (prompt == last_prompt) and (model_name == last_model_name):
show = False
if prompt:
st.sidebar.info("Select 'Custom Prompt' to ask your own questions.")
if show:
# Add user input to chat history
user_response = get_from_user(prompt)
st.session_state.responses.append(user_response)
# select random waiting line
with st.spinner(random.choice(waiting_lines)):
ran = False
for i in range(1):
print(f"Attempt {i+1}")
if model_name == "gemini-pro":
llm = GoogleGenerativeAI(
model=models[model_name], google_api_key=os.getenv("GEMINI_TOKEN"), temperature=0
)
else:
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0)
df_check = pd.read_csv("Data.csv")
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
df_check = df_check.head(5)
new_line = "\n"
parameters = {"font.size": 12, "figure.dpi": 600}
template = f"""```python
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams.update({parameters})
df = pd.read_csv("Data.csv")
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
import geopandas as gpd
india = gpd.read_file("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c0a36/india_states.geojson")
india.loc[india['ST_NM'].isin(['Ladakh', 'Jammu & Kashmir']), 'ST_NM'] = 'Jammu and Kashmir'
import uuid
# df.dtypes
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
{new_line.join(['# '+line for line in prompt.strip().split(new_line)])}
"""
with open("system_prompt.txt") as f:
system_prompt = f.read().strip()
query = f"""{system_prompt}
Complete the following code.
{template}
"""
answer = None
code = None
error = None
try:
if model_name == "gemini-pro":
answer = llm.invoke(query)
else:
answer = llm.invoke(query).content
code = f"""
{template.split("```python")[1].split("```")[0]}
{answer.split("```python")[1].split("```")[0]}
"""
# update variable `answer` when code is executed
exec(code)
ran = True
except Exception as e:
error = e
if code is not None:
answer = f"Error executing the code...\n\n{e}"
if type(answer) != str:
answer = f"!!!Faced an error while working on your query. Please try again!!!"
response = {
"role": "assistant",
"content": answer,
"gen_code": code,
"ex_code": code,
"last_prompt": prompt,
"error": error,
}
try:
print("Trying to open image", answer)
img = Image.open(answer)
print("Image opened")
image = answer
answer = None
except:
image = None
item = {
"prompt": prompt,
"code": code,
"answer": answer,
"error": error,
"model": model_name,
"image": image,
}
# Update to HuggingFace dataset
dataset_config = get_dataset_config_info("SustainabilityLabIITGN/VayuBuddy_logs", token=hf_token)
splits = dataset_config.splits
last_split = list(splits.keys())[-1]
last_split_size = splits[last_split].num_examples
ds = load_dataset("SustainabilityLabIITGN/VayuBuddy_logs", token=hf_token, split=last_split)
if last_split_size >= 100:
current_split = str(int(last_split) + 1)
ds = Dataset.from_list([item], features=ds.features)
else:
current_split = last_split
ds = ds.add_item(item)
ds.push_to_hub("SustainabilityLabIITGN/VayuBuddy_logs", split=current_split, token=hf_token)
# Get response from agent
# response = ask_question(model_name=model_name, question=prompt)
# response = ask_agent(agent, prompt)
if ran:
break
# Append agent response to chat history
st.session_state.responses.append(response)
st.session_state["last_prompt"] = prompt
st.session_state["last_model_name"] = model_name
st.rerun()
# contact details
contact_details = """
**Feel free to reach out to us:**
- [Zeel B Patel](https://patel-zeel.github.io/)
(PhD Student, IIT Gandhinagar)
- Vinayak Rana
(Developer, IIT Gandhinagar)
- Nitish Sharma
(Developer, Independent Contributor)
- Yash J Bachwana
(Developer, IIT Gandhinagar)
- [Nipun Batra](https://nipunbatra.github.io/)
(Faculty, IIT Gandhinagar)
"""
# Display contact details with message
st.sidebar.markdown("<hr>", unsafe_allow_html=True)
st.sidebar.markdown(contact_details, unsafe_allow_html=True)
st.markdown(
"""
<style>
.sidebar .sidebar-content {
position: sticky;
top: 0;
height: 100vh;
overflow-y: auto;
overflow-x: hidden;
}
</style>
""",
unsafe_allow_html=True,
)
|