Spaces:
Sleeping
Sleeping
Sushwetabm
commited on
Commit
Β·
aff0b1f
1
Parent(s):
ce3ac0e
updated model.py
Browse files
model.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# model.py -
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import torch
|
4 |
from functools import lru_cache
|
@@ -9,117 +9,87 @@ import logging
|
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
-
# Global variables to store loaded model
|
13 |
_tokenizer = None
|
14 |
_model = None
|
15 |
_model_loading = False
|
16 |
_model_loaded = False
|
17 |
|
18 |
@lru_cache(maxsize=1)
|
19 |
-
# def get_model_config():
|
20 |
-
# """Cache model configuration"""
|
21 |
-
# return {
|
22 |
-
# "model_id": "deepseek-ai/deepseek-coder-1.3b-instruct",
|
23 |
-
# "torch_dtype": torch.bfloat16,
|
24 |
-
# "device_map": "auto",
|
25 |
-
# "trust_remote_code": True,
|
26 |
-
# # Add these optimizations
|
27 |
-
# "low_cpu_mem_usage": True,
|
28 |
-
# "use_cache": True,
|
29 |
-
# }
|
30 |
def get_model_config():
|
31 |
return {
|
32 |
"model_id": "Salesforce/codet5p-220m",
|
33 |
"trust_remote_code": True
|
34 |
}
|
|
|
35 |
def load_model_sync():
|
36 |
-
"""Synchronous model loading with optimizations"""
|
37 |
global _tokenizer, _model, _model_loaded
|
38 |
-
|
39 |
if _model_loaded:
|
40 |
return _tokenizer, _model
|
41 |
-
|
42 |
config = get_model_config()
|
43 |
model_id = config["model_id"]
|
44 |
-
|
45 |
logger.info(f"π§ Loading model {model_id}...")
|
46 |
-
|
47 |
try:
|
48 |
-
# Set cache directory to avoid re-downloading
|
49 |
cache_dir = os.environ.get("TRANSFORMERS_CACHE", "./model_cache")
|
50 |
os.makedirs(cache_dir, exist_ok=True)
|
51 |
-
|
52 |
-
# Load tokenizer first (faster)
|
53 |
logger.info("π Loading tokenizer...")
|
54 |
_tokenizer = AutoTokenizer.from_pretrained(
|
55 |
model_id,
|
56 |
trust_remote_code=config["trust_remote_code"],
|
57 |
cache_dir=cache_dir,
|
58 |
-
use_fast=True,
|
59 |
)
|
60 |
-
|
61 |
-
# Load model with optimizations
|
62 |
logger.info("π§ Loading model...")
|
63 |
_model = AutoModelForSeq2SeqLM.from_pretrained(
|
64 |
model_id,
|
65 |
trust_remote_code=config["trust_remote_code"],
|
66 |
-
|
67 |
-
device_map=config["device_map"],
|
68 |
-
low_cpu_mem_usage=config["low_cpu_mem_usage"],
|
69 |
-
cache_dir=cache_dir,
|
70 |
-
offload_folder="offload",
|
71 |
-
offload_state_dict=True
|
72 |
)
|
73 |
-
|
74 |
-
# Set to evaluation mode
|
75 |
_model.eval()
|
76 |
-
|
77 |
_model_loaded = True
|
78 |
logger.info("β
Model loaded successfully!")
|
79 |
return _tokenizer, _model
|
80 |
-
|
81 |
except Exception as e:
|
82 |
logger.error(f"β Failed to load model: {e}")
|
83 |
raise
|
84 |
|
85 |
async def load_model_async():
|
86 |
-
"""Asynchronous model loading"""
|
87 |
global _model_loading
|
88 |
-
|
89 |
if _model_loaded:
|
90 |
return _tokenizer, _model
|
91 |
-
|
92 |
if _model_loading:
|
93 |
-
# Wait for ongoing loading to complete
|
94 |
while _model_loading and not _model_loaded:
|
95 |
await asyncio.sleep(0.1)
|
96 |
return _tokenizer, _model
|
97 |
-
|
98 |
_model_loading = True
|
99 |
-
|
100 |
try:
|
101 |
-
# Run model loading in thread pool to avoid blocking
|
102 |
loop = asyncio.get_event_loop()
|
103 |
with ThreadPoolExecutor(max_workers=1) as executor:
|
104 |
-
tokenizer, model = await loop.run_in_executor(
|
105 |
-
executor, load_model_sync
|
106 |
-
)
|
107 |
return tokenizer, model
|
108 |
finally:
|
109 |
_model_loading = False
|
110 |
|
111 |
def get_model():
|
112 |
-
"""Get the loaded model (for synchronous access)"""
|
113 |
if not _model_loaded:
|
114 |
return load_model_sync()
|
115 |
return _tokenizer, _model
|
116 |
|
117 |
def is_model_loaded():
|
118 |
-
"""Check if model is loaded"""
|
119 |
return _model_loaded
|
120 |
|
121 |
def get_model_info():
|
122 |
-
"""Get model information without loading"""
|
123 |
config = get_model_config()
|
124 |
return {
|
125 |
"model_id": config["model_id"],
|
|
|
1 |
+
# model.py - Fixed for CodeT5+
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import torch
|
4 |
from functools import lru_cache
|
|
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
|
|
12 |
_tokenizer = None
|
13 |
_model = None
|
14 |
_model_loading = False
|
15 |
_model_loaded = False
|
16 |
|
17 |
@lru_cache(maxsize=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def get_model_config():
|
19 |
return {
|
20 |
"model_id": "Salesforce/codet5p-220m",
|
21 |
"trust_remote_code": True
|
22 |
}
|
23 |
+
|
24 |
def load_model_sync():
|
|
|
25 |
global _tokenizer, _model, _model_loaded
|
26 |
+
|
27 |
if _model_loaded:
|
28 |
return _tokenizer, _model
|
29 |
+
|
30 |
config = get_model_config()
|
31 |
model_id = config["model_id"]
|
32 |
+
|
33 |
logger.info(f"π§ Loading model {model_id}...")
|
34 |
+
|
35 |
try:
|
|
|
36 |
cache_dir = os.environ.get("TRANSFORMERS_CACHE", "./model_cache")
|
37 |
os.makedirs(cache_dir, exist_ok=True)
|
38 |
+
|
|
|
39 |
logger.info("π Loading tokenizer...")
|
40 |
_tokenizer = AutoTokenizer.from_pretrained(
|
41 |
model_id,
|
42 |
trust_remote_code=config["trust_remote_code"],
|
43 |
cache_dir=cache_dir,
|
44 |
+
use_fast=True,
|
45 |
)
|
46 |
+
|
|
|
47 |
logger.info("π§ Loading model...")
|
48 |
_model = AutoModelForSeq2SeqLM.from_pretrained(
|
49 |
model_id,
|
50 |
trust_remote_code=config["trust_remote_code"],
|
51 |
+
cache_dir=cache_dir
|
|
|
|
|
|
|
|
|
|
|
52 |
)
|
53 |
+
|
|
|
54 |
_model.eval()
|
|
|
55 |
_model_loaded = True
|
56 |
logger.info("β
Model loaded successfully!")
|
57 |
return _tokenizer, _model
|
58 |
+
|
59 |
except Exception as e:
|
60 |
logger.error(f"β Failed to load model: {e}")
|
61 |
raise
|
62 |
|
63 |
async def load_model_async():
|
|
|
64 |
global _model_loading
|
65 |
+
|
66 |
if _model_loaded:
|
67 |
return _tokenizer, _model
|
68 |
+
|
69 |
if _model_loading:
|
|
|
70 |
while _model_loading and not _model_loaded:
|
71 |
await asyncio.sleep(0.1)
|
72 |
return _tokenizer, _model
|
73 |
+
|
74 |
_model_loading = True
|
75 |
+
|
76 |
try:
|
|
|
77 |
loop = asyncio.get_event_loop()
|
78 |
with ThreadPoolExecutor(max_workers=1) as executor:
|
79 |
+
tokenizer, model = await loop.run_in_executor(executor, load_model_sync)
|
|
|
|
|
80 |
return tokenizer, model
|
81 |
finally:
|
82 |
_model_loading = False
|
83 |
|
84 |
def get_model():
|
|
|
85 |
if not _model_loaded:
|
86 |
return load_model_sync()
|
87 |
return _tokenizer, _model
|
88 |
|
89 |
def is_model_loaded():
|
|
|
90 |
return _model_loaded
|
91 |
|
92 |
def get_model_info():
|
|
|
93 |
config = get_model_config()
|
94 |
return {
|
95 |
"model_id": config["model_id"],
|