Spaces:
Running
on
T4
Running
on
T4
# modules.gradio | |
# holds updates and lost code from gradio changes | |
import os | |
import gradio as gr | |
import numpy as np | |
import PIL | |
import PIL.Image | |
import shutil | |
import subprocess | |
from tempfile import NamedTemporaryFile | |
from pathlib import Path | |
class MatplotlibBackendMananger: | |
def __enter__(self): | |
try: | |
import matplotlib | |
self._original_backend = matplotlib.get_backend() | |
matplotlib.use("agg") | |
except ImportError: | |
pass | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
try: | |
import matplotlib | |
matplotlib.use(self._original_backend) | |
except ImportError: | |
pass | |
gr.utils.MatplotlibBackendMananger = MatplotlibBackendMananger | |
def make_waveform( | |
audio: str | tuple[int, np.ndarray], | |
*, | |
bg_color: str = "#f3f4f6", | |
bg_image: str | None = None, | |
fg_alpha: float = 0.75, | |
bars_color: str | tuple[str, str] = ("#fbbf24", "#ea580c"), | |
bar_count: int = 50, | |
bar_width: float = 0.6, | |
animate: bool = False, | |
name: str = "", | |
) -> str: | |
""" | |
Generates a waveform video from an audio file. Useful for creating an easy to share audio visualization. The output should be passed into a `gr.Video` component. | |
Parameters: | |
audio: Audio file path or tuple of (sample_rate, audio_data) | |
bg_color: Background color of waveform (ignored if bg_image is provided) | |
bg_image: Background image of waveform | |
fg_alpha: Opacity of foreground waveform | |
bars_color: Color of waveform bars. Can be a single color or a tuple of (start_color, end_color) of gradient | |
bar_count: Number of bars in waveform | |
bar_width: Width of bars in waveform. 1 represents full width, 0.5 represents half width, etc. | |
animate: If true, the audio waveform overlay will be animated, if false, it will be static. | |
Returns: | |
A filepath to the output video in mp4 format. | |
""" | |
import matplotlib.pyplot as plt | |
from matplotlib.animation import FuncAnimation | |
if isinstance(audio, str): | |
audio_file = audio | |
audio = gr.processing_utils.audio_from_file(audio) | |
else: | |
tmp_wav = NamedTemporaryFile(suffix=".wav", delete=False, prefix = name) | |
gr.processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name, format="wav") | |
audio_file = tmp_wav.name | |
if not os.path.isfile(audio_file): | |
raise ValueError("Audio file not found.") | |
ffmpeg = shutil.which("ffmpeg") | |
if not ffmpeg: | |
raise RuntimeError("ffmpeg not found.") | |
duration = round(len(audio[1]) / audio[0], 4) | |
# Helper methods to create waveform | |
def hex_to_rgb(hex_str): | |
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)] | |
def get_color_gradient(c1, c2, n): | |
if n < 1: | |
raise ValueError("Must have at least one stop in gradient") | |
c1_rgb = np.array(hex_to_rgb(c1)) / 255 | |
c2_rgb = np.array(hex_to_rgb(c2)) / 255 | |
mix_pcts = [x / (n - 1) for x in range(n)] | |
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts] | |
return [ | |
"#" + "".join(f"{int(round(val * 255)):02x}" for val in item) | |
for item in rgb_colors | |
] | |
# Reshape audio to have a fixed number of bars | |
samples = audio[1] | |
if len(samples.shape) > 1: | |
samples = np.mean(samples, 1) | |
bins_to_pad = bar_count - (len(samples) % bar_count) | |
samples = np.pad(samples, [(0, bins_to_pad)]) | |
samples = np.reshape(samples, (bar_count, -1)) | |
samples = np.abs(samples) | |
samples = np.max(samples, 1) | |
with MatplotlibBackendMananger(): | |
plt.clf() | |
# Plot waveform | |
color = ( | |
bars_color | |
if isinstance(bars_color, str) | |
else get_color_gradient(bars_color[0], bars_color[1], bar_count) | |
) | |
if animate: | |
fig = plt.figure(figsize=(5, 1), dpi=200, frameon=False) | |
fig.subplots_adjust(left=0, bottom=0, right=1, top=1) | |
plt.axis("off") | |
plt.margins(x=0) | |
bar_alpha = fg_alpha if animate else 1.0 | |
barcollection = plt.bar( | |
np.arange(0, bar_count), | |
samples * 2, | |
bottom=(-1 * samples), | |
width=bar_width, | |
color=color, | |
alpha=bar_alpha, | |
) | |
tmp_img = NamedTemporaryFile(suffix=".png", delete=False, prefix = name) | |
savefig_kwargs: dict[str, Any] = {"bbox_inches": "tight"} | |
if bg_image is not None: | |
savefig_kwargs["transparent"] = True | |
if animate: | |
savefig_kwargs["facecolor"] = "none" | |
else: | |
savefig_kwargs["facecolor"] = bg_color | |
plt.savefig(tmp_img.name, **savefig_kwargs) | |
if not animate: | |
waveform_img = PIL.Image.open(tmp_img.name) | |
waveform_img = waveform_img.resize((1000, 400)) | |
# Composite waveform with background image | |
if bg_image is not None: | |
waveform_array = np.array(waveform_img) | |
waveform_array[:, :, 3] = waveform_array[:, :, 3] * fg_alpha | |
waveform_img = PIL.Image.fromarray(waveform_array) | |
bg_img = PIL.Image.open(bg_image) | |
waveform_width, waveform_height = waveform_img.size | |
bg_width, bg_height = bg_img.size | |
if waveform_width != bg_width: | |
bg_img = bg_img.resize( | |
( | |
waveform_width, | |
2 * int(bg_height * waveform_width / bg_width / 2), | |
) | |
) | |
bg_width, bg_height = bg_img.size | |
composite_height = max(bg_height, waveform_height) | |
composite = PIL.Image.new( | |
"RGBA", (waveform_width, composite_height), "#FFFFFF" | |
) | |
composite.paste(bg_img, (0, composite_height - bg_height)) | |
composite.paste( | |
waveform_img, (0, composite_height - waveform_height), waveform_img | |
) | |
composite.save(tmp_img.name) | |
img_width, img_height = composite.size | |
else: | |
img_width, img_height = waveform_img.size | |
waveform_img.save(tmp_img.name) | |
else: | |
def _animate(_): | |
for idx, b in enumerate(barcollection): | |
rand_height = np.random.uniform(0.8, 1.2) | |
b.set_height(samples[idx] * rand_height * 2) | |
b.set_y((-rand_height * samples)[idx]) | |
frames = int(duration * 10) | |
anim = FuncAnimation( | |
fig, # type: ignore | |
_animate, # type: ignore | |
repeat=False, | |
blit=False, | |
frames=frames, | |
interval=100, | |
) | |
anim.save( | |
tmp_img.name, | |
writer="pillow", | |
fps=10, | |
codec="png", | |
savefig_kwargs=savefig_kwargs, | |
) | |
# Convert waveform to video with ffmpeg | |
output_mp4 = NamedTemporaryFile(suffix=".mp4", delete=False, prefix = name) | |
if animate and bg_image is not None: | |
ffmpeg_cmd = [ | |
ffmpeg, | |
"-loop", | |
"1", | |
"-i", | |
bg_image, | |
"-i", | |
tmp_img.name, | |
"-i", | |
audio_file, | |
"-filter_complex", | |
"[0:v]scale=w=trunc(iw/2)*2:h=trunc(ih/2)*2[bg];[1:v]format=rgba,colorchannelmixer=aa=1.0[ov];[bg][ov]overlay=(main_w-overlay_w*0.9)/2:main_h-overlay_h*0.9/2[output]", | |
"-t", | |
str(duration), | |
"-map", | |
"[output]", | |
"-map", | |
"2:a", | |
"-c:v", | |
"libx264", | |
"-c:a", | |
"aac", | |
"-shortest", | |
"-y", | |
output_mp4.name, | |
] | |
elif animate and bg_image is None: | |
ffmpeg_cmd = [ | |
ffmpeg, | |
"-i", | |
tmp_img.name, | |
"-i", | |
audio_file, | |
"-filter_complex", | |
"[0:v][1:a]concat=n=1:v=1:a=1[v];[v]scale=1000:400,format=yuv420p[v_scaled]", | |
"-map", | |
"[v_scaled]", | |
"-map", | |
"1:a", | |
"-c:v", | |
"libx264", | |
"-c:a", | |
"aac", | |
"-shortest", | |
"-y", | |
output_mp4.name, | |
] | |
else: | |
ffmpeg_cmd = [ | |
ffmpeg, | |
"-loop", | |
"1", | |
"-i", | |
tmp_img.name, | |
"-i", | |
audio_file, | |
"-vf", | |
f"color=c=#FFFFFF77:s={img_width}x{img_height}[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1", # type: ignore | |
"-t", | |
str(duration), | |
"-y", | |
output_mp4.name, | |
] | |
subprocess.check_call(ffmpeg_cmd) | |
return output_mp4.name | |
gr.make_waveform = make_waveform |