Spaces:
Running
on
T4
Running
on
T4
File size: 30,074 Bytes
5238467 1897b6f 8e10a53 5238467 925b7f8 59cc4f3 790c9e0 efabdc6 790c9e0 efabdc6 9138f15 1897b6f 790c9e0 1a6de5e e7edd0b 14af4d8 aef7fad e7edd0b 1028cad e7edd0b 1897b6f 5238467 595ae94 1a6de5e 595ae94 a8a94b6 59cc4f3 e7edd0b e13199d 5238467 1a6de5e efabdc6 790c9e0 d758673 efabdc6 e7edd0b efabdc6 e7edd0b 5238467 de8ae12 5238467 de8ae12 5238467 1028cad 59cc4f3 c849a65 a8a94b6 a549dc4 c849a65 a8a94b6 c849a65 a8a94b6 1028cad a8a94b6 1028cad a8a94b6 1028cad c849a65 a8a94b6 1028cad a8a94b6 ee1911a 74894bc e7edd0b 1028cad 74894bc 1028cad 1a6de5e e7edd0b 1a6de5e e7edd0b 1a6de5e e7edd0b 1a6de5e e7edd0b 4f37585 5238467 e3f64dd 1a6de5e e3f64dd 1dda6b6 e3f64dd 5238467 e7edd0b e13199d e7edd0b e3f64dd e7edd0b 5238467 1a6de5e e7edd0b 14af4d8 e3f64dd cca6d10 d7ef5a5 cca6d10 790c9e0 cca6d10 790c9e0 cca6d10 e7edd0b cca6d10 e3f64dd 14af4d8 e83dc6d 14af4d8 e7edd0b 74894bc a8a94b6 23fe483 e7edd0b de8ae12 e7edd0b 5238467 e13199d de8ae12 e13199d e7edd0b de8ae12 bedb522 0ffc43b bedb522 e7edd0b feb9b54 e7edd0b e13199d e7edd0b c849a65 e7edd0b e13199d e7edd0b e13199d e7edd0b de8ae12 e7edd0b de8ae12 adf74d8 de8ae12 a8a94b6 e7edd0b de8ae12 e13199d de8ae12 595ae94 20a0fad de8ae12 8e10a53 de8ae12 20a0fad e7edd0b 20a0fad e13199d 20a0fad de8ae12 e7edd0b de8ae12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
from tempfile import NamedTemporaryFile
import argparse
import torch
import gradio as gr
import os
import subprocess
import sys
from pathlib import Path
import time
import typing as tp
import warnings
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
from audiocraft.data.audio_utils import apply_fade, apply_tafade, apply_splice_effect
from audiocraft.utils.extend import generate_music_segments, add_settings_to_image, INTERRUPTING
from audiocraft.utils import utils
import numpy as np
import random
import shutil
from mutagen.mp4 import MP4
#from typing import List, Union
import librosa
import modules.user_history
from modules.version_info import versions_html, commit_hash, get_xformers_version
from modules.gradio import *
from modules.file_utils import get_file_parts, get_filename_from_filepath, convert_title_to_filename, get_filename, delete_file
MODEL = None
MODELS = None
IS_SHARED_SPACE = "Surn/UnlimitedMusicGen" in os.environ.get('SPACE_ID', '')
INTERRUPTED = False
UNLOAD_MODEL = False
MOVE_TO_CPU = False
MAX_PROMPT_INDEX = 0
git = os.environ.get('GIT', "git")
#s.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128,expandable_segments:True"
# os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
# os.environ['CUDA_MODULE_LOADING']='LAZY'
# os.environ['USE_FLASH_ATTENTION'] = '1'
# os.environ['XFORMERS_FORCE_DISABLE_TRITON']= '1'
def interrupt_callback():
return INTERRUPTED
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
#file_cleaner = FileCleaner()
def toggle_audio_src(choice):
if choice == "mic":
return gr.update(source="microphone", value=None, label="Microphone")
else:
return gr.update(source="upload", value=None, label="File")
def get_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def load_model(version):
global MODEL, MODELS, UNLOAD_MODEL
print("Loading model", version)
if MODELS is None:
return MusicGen.get_pretrained(version)
else:
t1 = time.monotonic()
if MODEL is not None:
MODEL.to('cpu') # move to cache
print("Previous model moved to CPU in %.2fs" % (time.monotonic() - t1))
t1 = time.monotonic()
if MODELS.get(version) is None:
print("Loading model %s from disk" % version)
result = MusicGen.get_pretrained(version)
MODELS[version] = result
print("Model loaded in %.2fs" % (time.monotonic() - t1))
return result
result = MODELS[version].to('cuda')
print("Cached model loaded in %.2fs" % (time.monotonic() - t1))
return result
def get_melody(melody_filepath):
audio_data= list(librosa.load(melody_filepath, sr=None))
audio_data[0], audio_data[1] = audio_data[1], audio_data[0]
melody = tuple(audio_data)
return melody
def git_tag():
try:
return subprocess.check_output([git, "describe", "--tags"], shell=False, encoding='utf8').strip()
except Exception:
try:
from pathlib import Path
changelog_md = Path(__file__).parent.parent / "CHANGELOG.md"
with changelog_md.open(encoding="utf-8") as file:
return next((line.strip() for line in file if line.strip()), "<none>")
except Exception:
return "<none>"
def load_melody_filepath(melody_filepath, title, assigned_model):
# get melody filename
#$Union[str, os.PathLike]
symbols = ['_', '.', '-']
if (melody_filepath is None) or (melody_filepath == ""):
return title, gr.update(maximum=0, value=0) , gr.update(value="medium", interactive=True)
if (title is None) or ("MusicGen" in title) or (title == ""):
melody_name, melody_extension = get_filename_from_filepath(melody_filepath)
# fix melody name for symbols
for symbol in symbols:
melody_name = melody_name.replace(symbol, ' ').title()
else:
melody_name = title
if ("melody" not in assigned_model):
assigned_model = "melody-large"
print(f"Melody name: {melody_name}, Melody Filepath: {melody_filepath}, Model: {assigned_model}\n")
# get melody length in number of segments and modify the UI
melody = get_melody(melody_filepath)
sr, melody_data = melody[0], melody[1]
segment_samples = sr * 30
total_melodys = max(min((len(melody_data) // segment_samples), 25), 0)
print(f"Melody length: {len(melody_data)}, Melody segments: {total_melodys}\n")
MAX_PROMPT_INDEX = total_melodys
return gr.update(value=melody_name), gr.update(maximum=MAX_PROMPT_INDEX, value=0), gr.update(value=assigned_model, interactive=True)
def predict(model, text, melody_filepath, duration, dimension, topk, topp, temperature, cfg_coef, background, title, settings_font, settings_font_color, seed, overlap=1, prompt_index = 0, include_title = True, include_settings = True, harmony_only = False):
global MODEL, INTERRUPTED, INTERRUPTING, MOVE_TO_CPU
output_segments = None
melody_name = "Not Used"
melody_extension = "Not Used"
melody = None
if melody_filepath:
melody_name, melody_extension = get_filename_from_filepath(melody_filepath)
melody = get_melody(melody_filepath)
INTERRUPTED = False
INTERRUPTING = False
if temperature < 0:
temperature -0
raise gr.Error("Temperature must be >= 0.")
if topk < 0:
topk = 1
raise gr.Error("Topk must be non-negative.")
if topp < 0:
topp =1
raise gr.Error("Topp must be non-negative.")
try:
if MODEL is None or MODEL.name != model:
MODEL = load_model(model)
else:
if MOVE_TO_CPU:
MODEL.to('cuda')
except Exception as e:
raise gr.Error(f"Error loading model '{model}': {str(e)}. Try a different model.")
# prevent hacking
duration = min(duration, 720)
overlap = min(overlap, 15)
#
output = None
segment_duration = duration
initial_duration = duration
output_segments = []
while duration > 0:
if not output_segments: # first pass of long or short song
if segment_duration > MODEL.lm.cfg.dataset.segment_duration:
segment_duration = MODEL.lm.cfg.dataset.segment_duration
else:
segment_duration = duration
else: # next pass of long song
if duration + overlap < MODEL.lm.cfg.dataset.segment_duration:
segment_duration = duration + overlap
else:
segment_duration = MODEL.lm.cfg.dataset.segment_duration
# implement seed
if seed < 0:
seed = random.randint(0, 0xffff_ffff_ffff)
torch.manual_seed(seed)
print(f'Segment duration: {segment_duration}, duration: {duration}, overlap: {overlap}')
MODEL.set_generation_params(
use_sampling=True,
top_k=topk,
top_p=topp,
temperature=temperature,
cfg_coef=cfg_coef,
duration=segment_duration,
two_step_cfg=False,
rep_penalty=0.5
)
try:
if melody:
# return excess duration, load next model and continue in loop structure building up output_segments
if duration > MODEL.lm.cfg.dataset.segment_duration:
output_segments, duration = generate_music_segments(text, melody, seed, MODEL, duration, overlap, MODEL.lm.cfg.dataset.segment_duration, prompt_index, harmony_only=False)
else:
# pure original code
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0)
print(melody.shape)
if melody.dim() == 2:
melody = melody[None]
melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)]
output = MODEL.generate_with_chroma(
descriptions=[text],
melody_wavs=melody,
melody_sample_rate=sr,
progress=False
)
# All output_segments are populated, so we can break the loop or set duration to 0
break
else:
#output = MODEL.generate(descriptions=[text], progress=False)
if not output_segments:
next_segment = MODEL.generate(descriptions=[text], progress=True)
duration -= segment_duration
else:
last_chunk = output_segments[-1][:, :, -overlap*MODEL.sample_rate:]
next_segment = MODEL.generate_continuation(last_chunk, MODEL.sample_rate, descriptions=[text], progress=True)
duration -= segment_duration - overlap
if next_segment != None:
output_segments.append(next_segment)
except Exception as e:
print(f"Error generating audio: {e}")
gr.Error(f"Error generating audio: {e}")
return None, None, seed
if INTERRUPTING:
INTERRUPTED = True
INTERRUPTING = False
print("Function execution interrupted!")
raise gr.Error("Interrupted.")
print(f"\nOutput segments: {len(output_segments)}\n")
if output_segments:
try:
# Combine the output segments into one long audio file or stack tracks
#output_segments = [segment.detach().cpu().float()[0] for segment in output_segments]
#output = torch.cat(output_segments, dim=dimension)
output = output_segments[0]
for i in range(1, len(output_segments)):
if overlap > 0:
overlap_samples = overlap * MODEL.sample_rate
#stack tracks and fade out/in
overlapping_output_fadeout = output[:, :, -overlap_samples:]
#overlapping_output_fadeout = apply_fade(overlapping_output_fadeout,sample_rate=MODEL.sample_rate,duration=overlap,out=True,start=True, curve_end=0.0, current_device=MODEL.device)
overlapping_output_fadeout = apply_tafade(overlapping_output_fadeout,sample_rate=MODEL.sample_rate,duration=overlap,out=True,start=True,shape="linear")
overlapping_output_fadein = output_segments[i][:, :, :overlap_samples]
#overlapping_output_fadein = apply_fade(overlapping_output_fadein,sample_rate=MODEL.sample_rate,duration=overlap,out=False,start=False, curve_start=0.0, current_device=MODEL.device)
overlapping_output_fadein = apply_tafade(overlapping_output_fadein,sample_rate=MODEL.sample_rate,duration=overlap,out=False,start=False, shape="linear")
overlapping_output = torch.cat([overlapping_output_fadeout[:, :, :-(overlap_samples // 2)], overlapping_output_fadein],dim=2)
###overlapping_output, overlap_sample_rate = apply_splice_effect(overlapping_output_fadeout, MODEL.sample_rate, overlapping_output_fadein, MODEL.sample_rate, overlap)
print(f" overlap size Fade:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")
##overlapping_output = torch.cat([output[:, :, -overlap_samples:], output_segments[i][:, :, :overlap_samples]], dim=1) #stack tracks
##print(f" overlap size stack:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")
#overlapping_output = torch.cat([output[:, :, -overlap_samples:], output_segments[i][:, :, :overlap_samples]], dim=2) #stack tracks
#print(f" overlap size cat:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")
output = torch.cat([output[:, :, :-overlap_samples], overlapping_output, output_segments[i][:, :, overlap_samples:]], dim=dimension)
else:
output = torch.cat([output, output_segments[i]], dim=dimension)
output = output.detach().cpu().float()[0]
except Exception as e:
print(f"Error combining segments: {e}. Using the first segment only.")
output = output_segments[0].detach().cpu().float()[0]
else:
if (output is None) or (output.dim() == 0):
return None, None, seed
else:
output = output.detach().cpu().float()[0]
profile: gr.OAuthProfile | None = None
title_file_name = convert_title_to_filename(title)
with NamedTemporaryFile("wb", suffix=".wav", delete=False, prefix = title_file_name) as file:
video_description = f"{text}\n Duration: {str(initial_duration)} Dimension: {dimension}\n Top-k:{topk} Top-p:{topp}\n Randomness:{temperature}\n cfg:{cfg_coef} overlap: {overlap}\n Seed: {seed}\n Model: {model}\n Melody Condition:{melody_name}\n Sample Segment: {prompt_index}"
if include_settings or include_title:
background = add_settings_to_image(title if include_title else "", video_description if include_settings else "", background_path=background, font=settings_font, font_color=settings_font_color)
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=18, loudness_compressor=True, add_suffix=False, channels=2)
waveform_video_path = get_waveform(file.name,bg_image=background, bar_count=45, name = title_file_name)
# Remove the extension from file.name
file_name_without_extension = os.path.splitext(file.name)[0]
# Get the directory, filename, name, extension, and new extension of the waveform video path
video_dir, video_name, video_name, video_ext, video_new_ext = get_file_parts(waveform_video_path)
new_video_path = os.path.join(video_dir, title_file_name + video_new_ext)
mp4 = MP4(waveform_video_path)
mp4["©nam"] = title_file_name # Title tag
mp4["desc"] = f"{text}\n Duration: {str(initial_duration)}" # Description tag
commit = commit_hash()
metadata={
"prompt": text,
"negative_prompt": "",
"Seed": seed,
"steps": 1,
"width": "768px",
"height":"512px",
"Dimension": dimension,
"Top-k": topk,
"Top-p":topp,
"Randomness": temperature,
"cfg":cfg_coef,
"overlap": overlap,
"Melody Condition": melody_name,
"Sample Segment": prompt_index,
"Duration": initial_duration,
"Audio": file.name,
"font": settings_font,
"font_color": settings_font_color,
"harmony_only": harmony_only,
"background": background,
"include_title": include_title,
"include_settings": include_settings,
"profile": profile,
"commit": commit_hash(),
"tag": git_tag(),
"version": gr.__version__,
"model_version": MODEL.version,
"model_name": MODEL.name,
"model_description": f"{MODEL.audio_channels} channels, {MODEL.sample_rate} Hz",
"melody_name" : melody_name if melody_name else "",
"melody_extension" : melody_extension if melody_extension else "",
"hostname": "https://huggingface.co/spaces/Surn/UnlimitedMusicGen",
"version" : f"""https://huggingface.co/spaces/Surn/UnlimitedMusicGen/commit/{"huggingface" if commit == "<none>" else commit}""",
"python" : sys.version,
"torch" : getattr(torch, '__long_version__',torch.__version__),
"xformers": get_xformers_version(),
"gradio": gr.__version__,
"huggingface_space": os.environ.get('SPACE_ID', ''),
"CUDA": f"""{"CUDA is available. device: " + torch.cuda.get_device_name(0) + " version: " + torch.version.cuda if torch.cuda.is_available() else "CUDA is not available."}""",
}
# Add additional metadata from the metadata dictionary (if it exists)
for key, value in metadata.items():
mp4[key] = str(value) # Convert values to strings as required by mutagen
# Save the metadata changes to the file
mp4.save()
try:
if os.path.exists(new_video_path):
delete_file(new_video_path)
# Open the original MP4 file in binary read mode and the new file in binary write mode
with open(waveform_video_path, "rb") as src, open(new_video_path, "wb") as dst:
if os.path.exists(waveform_video_path):
# Copy the contents from the source file to the destination file
shutil.copyfileobj(src, dst)
waveform_video_path = new_video_path
except Exception as e:
print(f"Error copying file: {e}")
if waveform_video_path:
modules.user_history.save_file(
profile=profile,
image=background,
audio=file,
video=waveform_video_path,
label=text,
metadata=metadata,
)
if MOVE_TO_CPU:
MODEL.to('cpu')
if UNLOAD_MODEL:
MODEL = None
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
return waveform_video_path, file.name, seed
gr.set_static_paths(paths=["fonts/","assets/","images/"])
def ui(**kwargs):
with gr.Blocks(title="UnlimitedMusicGen",css_paths="style_20250331.css", theme='Surn/beeuty') as demo:
with gr.Tab("UnlimitedMusicGen"):
gr.Markdown(
"""
# UnlimitedMusicGen
This is your private demo for [UnlimitedMusicGen](https://github.com/Oncorporation/audiocraft), a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
Disclaimer: This won't run on CPU only. Clone this App and run on GPU instance!
Todo: Working on improved Interrupt.
Theme Available at ["Surn/Beeuty"](https://huggingface.co/spaces/Surn/Beeuty)
"""
)
if IS_SHARED_SPACE and not torch.cuda.is_available():
gr.Markdown("""
⚠ This Space doesn't work in this shared UI ⚠
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
to use it privately, or use the <a href="https://huggingface.co/spaces/facebook/MusicGen">public demo</a>
""")
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Describe your music", interactive=True, value="4/4 100bpm 320kbps 48khz, Industrial/Electronic Soundtrack, Dark, Intense, Sci-Fi")
with gr.Column():
duration = gr.Slider(minimum=1, maximum=720, value=10, label="Duration (s)", interactive=True)
model = gr.Radio(["melody", "medium", "small", "large", "melody-large", "stereo-small", "stereo-medium", "stereo-large", "stereo-melody", "stereo-melody-large"], label="AI Model", value="medium", interactive=True)
with gr.Row():
submit = gr.Button("Generate", elem_id="btn-generate")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt", elem_id="btn-interrupt").click(fn=interrupt, queue=False)
with gr.Row():
with gr.Column():
radio = gr.Radio(["file", "mic"], value="file", label="Condition on a melody (optional) File or Mic")
melody_filepath = gr.Audio(sources=["upload"], type="filepath", label="Melody Condition (optional)", interactive=True, elem_id="melody-input")
with gr.Column():
harmony_only = gr.Radio(label="Use Harmony Only",choices=["No", "Yes"], value="No", interactive=True, info="Remove Drums?")
prompt_index = gr.Slider(label="Melody Condition Sample Segment", minimum=-1, maximum=MAX_PROMPT_INDEX, step=1, value=0, interactive=True, info="Which 30 second segment to condition with, - 1 condition each segment independantly")
with gr.Accordion("Video", open=False):
with gr.Row():
background= gr.Image(value="./assets/background.png", sources=["upload"], label="Background", width=768, height=512, type="filepath", interactive=True)
with gr.Column():
include_title = gr.Checkbox(label="Add Title", value=True, interactive=True)
include_settings = gr.Checkbox(label="Add Settings to background", value=True, interactive=True)
with gr.Row():
title = gr.Textbox(label="Title", value="UnlimitedMusicGen", interactive=True)
settings_font = gr.Text(label="Settings Font", value="./assets/arial.ttf", interactive=True)
settings_font_color = gr.ColorPicker(label="Settings Font Color", value="#c87f05", interactive=True)
with gr.Accordion("Expert", open=False):
with gr.Row():
overlap = gr.Slider(minimum=0, maximum=15, value=2, step=1, label="Verse Overlap", interactive=True)
dimension = gr.Slider(minimum=-2, maximum=2, value=2, step=1, label="Dimension", info="determines which direction to add new segements of audio. (1 = stack tracks, 2 = lengthen, -2..0 = ?)", interactive=True)
with gr.Row():
topk = gr.Number(label="Top-k", value=280, precision=0, interactive=True)
topp = gr.Number(label="Top-p", value=1150, precision=0, interactive=True)
temperature = gr.Number(label="Randomness Temperature", value=0.7, precision=None, interactive=True)
cfg_coef = gr.Number(label="Classifier Free Guidance", value=8.5, precision=None, interactive=True)
with gr.Row():
seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True)
gr.Button('\U0001f3b2\ufe0f', elem_classes="small-btn").click(fn=lambda: -1, outputs=[seed], queue=False)
reuse_seed = gr.Button('\u267b\ufe0f', elem_classes="small-btn")
with gr.Column() as c:
output = gr.Video(label="Generated Music")
wave_file = gr.File(label=".wav file", elem_id="output_wavefile", interactive=True)
seed_used = gr.Number(label='Seed used', value=-1, interactive=False)
radio.change(toggle_audio_src, radio, [melody_filepath], queue=False, show_progress=False)
melody_filepath.change(load_melody_filepath, inputs=[melody_filepath, title, model], outputs=[title, prompt_index , model], api_name="melody_filepath_change", queue=False)
reuse_seed.click(fn=lambda x: x, inputs=[seed_used], outputs=[seed], queue=False, api_name="reuse_seed")
submit.click(predict, inputs=[model, text,melody_filepath, duration, dimension, topk, topp, temperature, cfg_coef, background, title, settings_font, settings_font_color, seed, overlap, prompt_index, include_title, include_settings, harmony_only], outputs=[output, wave_file, seed_used], api_name="submit")
gr.Examples(
examples=[
[
"4/4 120bpm 320kbps 48khz, An 80s driving pop song with heavy drums and synth pads in the background",
"./assets/bach.mp3",
"melody",
"80s Pop Synth"
],
[
"4/4 120bpm 320kbps 48khz, A cheerful country song with acoustic guitars",
"./assets/bolero_ravel.mp3",
"stereo-melody-large",
"Country Guitar"
],
[
"4/4 120bpm 320kbps 48khz, 90s rock song with electric guitar and heavy drums",
None,
"stereo-medium",
"90s Rock Guitar"
],
[
"4/4 120bpm 320kbps 48khz, a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
"./assets/bach.mp3",
"melody-large",
"EDM my Bach"
],
[
"4/4 320kbps 48khz, lofi slow bpm electro chill with organic samples",
None,
"medium",
"LoFi Chill"
],
],
inputs=[text, melody_filepath, model, title],
outputs=[output]
)
gr.HTML(value=versions_html(), visible=True, elem_id="versions")
with gr.Tab("User History") as history_tab:
modules.user_history.render()
# Show the interface
launch_kwargs = {}
share = kwargs.get('share', False)
server_port = kwargs.get('server_port', 0)
server_name = kwargs.get('listen')
launch_kwargs['server_name'] = server_name
if server_port > 0:
launch_kwargs['server_port'] = server_port
if share:
launch_kwargs['share'] = share
launch_kwargs['favicon_path']= "./assets/favicon.ico"
demo.queue(max_size=10, api_open=False).launch(**launch_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
parser.add_argument(
'--unload_model', action='store_true', help='Unload the model after every generation to save GPU memory'
)
parser.add_argument(
'--unload_to_cpu', action='store_true', help='Move the model to main RAM after every generation to save GPU memory but reload faster than after full unload (see above)'
)
parser.add_argument(
'--cache', action='store_true', help='Cache models in RAM to quickly switch between them'
)
args = parser.parse_args()
launch_kwargs = {}
launch_kwargs['listen'] = args.listen
if args.username and args.password:
launch_kwargs['auth'] = (args.username, args.password)
if args.server_port:
launch_kwargs['server_port'] = args.server_port
if args.inbrowser:
launch_kwargs['inbrowser'] = args.inbrowser
if args.share:
launch_kwargs['share'] = args.share
launch_kwargs['favicon_path']= "./assets/favicon.ico"
UNLOAD_MODEL = args.unload_model
MOVE_TO_CPU = args.unload_to_cpu
if args.cache:
MODELS = {}
ui(
unload_to_cpu = MOVE_TO_CPU,
share=args.share,
**launch_kwargs,
)
|