Spaces:
Running
on
T4
Running
on
T4
File size: 9,141 Bytes
e7edd0b 8fcd249 e7edd0b 8fcd249 e7edd0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# modules.gradio
# holds updates and lost code from gradio changes
import os
import gradio as gr
import numpy as np
import PIL
import PIL.Image
import shutil
import subprocess
from tempfile import NamedTemporaryFile
from pathlib import Path
from tqdm import tqdm
class MatplotlibBackendMananger:
def __enter__(self):
try:
import matplotlib
self._original_backend = matplotlib.get_backend()
matplotlib.use("agg")
except ImportError:
pass
def __exit__(self, exc_type, exc_val, exc_tb):
try:
import matplotlib
matplotlib.use(self._original_backend)
except ImportError:
pass
gr.utils.MatplotlibBackendMananger = MatplotlibBackendMananger
def make_waveform(
audio: str | tuple[int, np.ndarray],
*,
bg_color: str = "#f3f4f6",
bg_image: str | None = None,
fg_alpha: float = 0.75,
bars_color: str | tuple[str, str] = ("#fbbf24", "#ea580c"),
bar_count: int = 50,
bar_width: float = 0.6,
animate: bool = False,
name: str = "",
progress= gr.Progress(track_tqdm=True)
) -> str:
"""
Generates a waveform video from an audio file. Useful for creating an easy to share audio visualization. The output should be passed into a `gr.Video` component.
Parameters:
audio: Audio file path or tuple of (sample_rate, audio_data)
bg_color: Background color of waveform (ignored if bg_image is provided)
bg_image: Background image of waveform
fg_alpha: Opacity of foreground waveform
bars_color: Color of waveform bars. Can be a single color or a tuple of (start_color, end_color) of gradient
bar_count: Number of bars in waveform
bar_width: Width of bars in waveform. 1 represents full width, 0.5 represents half width, etc.
animate: If true, the audio waveform overlay will be animated, if false, it will be static.
Returns:
A filepath to the output video in mp4 format.
"""
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
if isinstance(audio, str):
audio_file = audio
audio = gr.processing_utils.audio_from_file(audio)
else:
tmp_wav = NamedTemporaryFile(suffix=".wav", delete=False, prefix = name)
gr.processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name, format="wav")
audio_file = tmp_wav.name
if not os.path.isfile(audio_file):
raise ValueError("Audio file not found.")
ffmpeg = shutil.which("ffmpeg")
if not ffmpeg:
raise RuntimeError("ffmpeg not found.")
duration = round(len(audio[1]) / audio[0], 4)
# Helper methods to create waveform
def hex_to_rgb(hex_str):
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)]
def get_color_gradient(c1, c2, n):
if n < 1:
raise ValueError("Must have at least one stop in gradient")
c1_rgb = np.array(hex_to_rgb(c1)) / 255
c2_rgb = np.array(hex_to_rgb(c2)) / 255
mix_pcts = [x / (n - 1) for x in range(n)]
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts]
return [
"#" + "".join(f"{int(round(val * 255)):02x}" for val in item)
for item in rgb_colors
]
# Reshape audio to have a fixed number of bars
samples = audio[1]
if len(samples.shape) > 1:
samples = np.mean(samples, 1)
bins_to_pad = bar_count - (len(samples) % bar_count)
samples = np.pad(samples, [(0, bins_to_pad)])
samples = np.reshape(samples, (bar_count, -1))
samples = np.abs(samples)
samples = np.max(samples, 1)
with MatplotlibBackendMananger():
plt.clf()
# Plot waveform
color = (
bars_color
if isinstance(bars_color, str)
else get_color_gradient(bars_color[0], bars_color[1], bar_count)
)
if animate:
fig = plt.figure(figsize=(5, 1), dpi=200, frameon=False)
fig.subplots_adjust(left=0, bottom=0, right=1, top=1)
plt.axis("off")
plt.margins(x=0)
bar_alpha = fg_alpha if animate else 1.0
barcollection = plt.bar(
np.arange(0, bar_count),
samples * 2,
bottom=(-1 * samples),
width=bar_width,
color=color,
alpha=bar_alpha,
)
tmp_img = NamedTemporaryFile(suffix=".png", delete=False, prefix = name)
savefig_kwargs: dict[str, Any] = {"bbox_inches": "tight"}
if bg_image is not None:
savefig_kwargs["transparent"] = True
if animate:
savefig_kwargs["facecolor"] = "none"
else:
savefig_kwargs["facecolor"] = bg_color
plt.savefig(tmp_img.name, **savefig_kwargs)
if not animate:
waveform_img = PIL.Image.open(tmp_img.name)
waveform_img = waveform_img.resize((1000, 400))
# Composite waveform with background image
if bg_image is not None:
waveform_array = np.array(waveform_img)
waveform_array[:, :, 3] = waveform_array[:, :, 3] * fg_alpha
waveform_img = PIL.Image.fromarray(waveform_array)
bg_img = PIL.Image.open(bg_image)
waveform_width, waveform_height = waveform_img.size
bg_width, bg_height = bg_img.size
if waveform_width != bg_width:
bg_img = bg_img.resize(
(
waveform_width,
2 * int(bg_height * waveform_width / bg_width / 2),
)
)
bg_width, bg_height = bg_img.size
composite_height = max(bg_height, waveform_height)
composite = PIL.Image.new(
"RGBA", (waveform_width, composite_height), "#FFFFFF"
)
composite.paste(bg_img, (0, composite_height - bg_height))
composite.paste(
waveform_img, (0, composite_height - waveform_height), waveform_img
)
composite.save(tmp_img.name)
img_width, img_height = composite.size
else:
img_width, img_height = waveform_img.size
waveform_img.save(tmp_img.name)
else:
def _animate(_):
for idx, b in enumerate(barcollection):
rand_height = np.random.uniform(0.8, 1.2)
b.set_height(samples[idx] * rand_height * 2)
b.set_y((-rand_height * samples)[idx])
frames = int(duration * 10)
anim = FuncAnimation(
fig, # type: ignore
_animate, # type: ignore
repeat=False,
blit=False,
frames=frames,
interval=100,
)
anim.save(
tmp_img.name,
writer="pillow",
fps=10,
codec="png",
savefig_kwargs=savefig_kwargs,
)
# Convert waveform to video with ffmpeg
output_mp4 = NamedTemporaryFile(suffix=".mp4", delete=False, prefix = name)
if animate and bg_image is not None:
ffmpeg_cmd = [
ffmpeg,
"-loop",
"1",
"-i",
bg_image,
"-i",
tmp_img.name,
"-i",
audio_file,
"-filter_complex",
"[0:v]scale=w=trunc(iw/2)*2:h=trunc(ih/2)*2[bg];[1:v]format=rgba,colorchannelmixer=aa=1.0[ov];[bg][ov]overlay=(main_w-overlay_w*0.9)/2:main_h-overlay_h*0.9/2[output]",
"-t",
str(duration),
"-map",
"[output]",
"-map",
"2:a",
"-c:v",
"libx264",
"-c:a",
"aac",
"-shortest",
"-y",
output_mp4.name,
]
elif animate and bg_image is None:
ffmpeg_cmd = [
ffmpeg,
"-i",
tmp_img.name,
"-i",
audio_file,
"-filter_complex",
"[0:v][1:a]concat=n=1:v=1:a=1[v];[v]scale=1000:400,format=yuv420p[v_scaled]",
"-map",
"[v_scaled]",
"-map",
"1:a",
"-c:v",
"libx264",
"-c:a",
"aac",
"-shortest",
"-y",
output_mp4.name,
]
else:
ffmpeg_cmd = [
ffmpeg,
"-loop",
"1",
"-i",
tmp_img.name,
"-i",
audio_file,
"-vf",
f"color=c=#FFFFFF77:s={img_width}x{img_height}[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1", # type: ignore
"-t",
str(duration),
"-y",
output_mp4.name,
]
subprocess.check_call(ffmpeg_cmd)
return output_mp4.name
gr.make_waveform = make_waveform |