Spaces:
Running
Running
import os | |
from pathlib import Path | |
import gradio as gr | |
import numpy as np | |
import open3d as o3d | |
import torch | |
from PIL import Image | |
from transformers import DPTForDepthEstimation, DPTImageProcessor | |
# Initialize the image processor and depth estimation model | |
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
def process_image(image_path, resized_width=800, z_scale=208): | |
""" | |
Processes the input image to generate a depth map and a 3D mesh reconstruction. | |
Args: | |
image_path (str): The file path to the input image. | |
Returns: | |
list: A list containing the depth image, 3D mesh reconstruction, and GLTF file path. | |
""" | |
image_path = Path(image_path) | |
if not image_path.exists(): | |
raise ValueError("Image file not found") | |
# Load and resize the image | |
image_raw = Image.open(image_path).convert("RGB") | |
print(f"Original size: {image_raw.size}") | |
resized_height = int(resized_width * image_raw.size[1] / image_raw.size[0]) | |
image = image_raw.resize((resized_width, resized_height), Image.Resampling.LANCZOS) | |
print(f"Resized size: {image.size}") | |
# Prepare image for the model | |
encoding = image_processor(image, return_tensors="pt") | |
# Perform depth estimation | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
predicted_depth = outputs.predicted_depth | |
# Interpolate depth to match the image size | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=(image.height, image.width), | |
mode="bicubic", | |
align_corners=True, | |
).squeeze() | |
# Normalize the depth image to 8-bit | |
prediction = prediction.cpu().numpy() | |
depth_min, depth_max = prediction.min(), prediction.max() | |
depth_image = ((prediction - depth_min) / (depth_max - depth_min) * 255).astype("uint8") | |
try: | |
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=10, z_scale=z_scale) | |
except Exception: | |
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=8, z_scale=z_scale) | |
img = Image.fromarray(depth_image) | |
return [img, gltf_path, gltf_path] | |
def create_3d_obj(rgb_image, raw_depth, image_path, depth=10, z_scale=200): | |
""" | |
Creates a 3D object from RGB and depth images. | |
Args: | |
rgb_image (np.ndarray): The RGB image as a NumPy array. | |
raw_depth (np.ndarray): The raw depth data. | |
image_path (Path): The path to the original image. | |
depth (int, optional): Depth parameter for Poisson reconstruction. Defaults to 10. | |
z_scale (float, optional): Scaling factor for the Z-axis. Defaults to 200. | |
Returns: | |
str: The file path to the saved GLTF model. | |
""" | |
# Normalize the depth image | |
depth_image = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min()) * 255).astype("uint8") | |
depth_o3d = o3d.geometry.Image(depth_image) | |
image_o3d = o3d.geometry.Image(rgb_image) | |
# Create RGBD image | |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
image_o3d, depth_o3d, convert_rgb_to_intensity=False | |
) | |
height, width = depth_image.shape | |
# Define camera intrinsics | |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic( | |
width, | |
height, | |
fx=1.0, | |
fy=1.0, | |
cx=width / 2.0, | |
cy=height / 2.0, | |
) | |
# Generate point cloud from RGBD image | |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic) | |
# Scale the Z dimension | |
points = np.asarray(pcd.points) | |
depth_scaled = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min())) * z_scale | |
z_values = depth_scaled.flatten()[:len(points)] | |
points[:, 2] *= z_values | |
pcd.points = o3d.utility.Vector3dVector(points) | |
# Estimate and orient normals | |
pcd.estimate_normals( | |
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30) | |
) | |
pcd.orient_normals_towards_camera_location(camera_location=np.array([0.0, 0.0, 2.0 ])) | |
# Apply transformations | |
pcd.transform([[1, 0, 0, 0], | |
[0, -1, 0, 0], | |
[0, 0, -1, 0], | |
[0, 0, 0, 1]]) | |
pcd.transform([[-1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 1, 0], | |
[0, 0, 0, 1]]) | |
# Perform Poisson surface reconstruction | |
print(f"Running Poisson surface reconstruction with depth {depth}") | |
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( | |
pcd, depth=depth, width=0, scale=1.1, linear_fit=True | |
) | |
print(f"Raw mesh vertices: {len(mesh_raw.vertices)}, triangles: {len(mesh_raw.triangles)}") | |
# Simplify the mesh using vertex clustering | |
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / (max(width, height) * 0.8) | |
mesh = mesh_raw.simplify_vertex_clustering( | |
voxel_size=voxel_size, | |
contraction=o3d.geometry.SimplificationContraction.Average, | |
) | |
print(f"Simplified mesh vertices: {len(mesh.vertices)}, triangles: {len(mesh.triangles)}") | |
# Crop the mesh to the bounding box of the point cloud | |
bbox = pcd.get_axis_aligned_bounding_box() | |
mesh_crop = mesh.crop(bbox) | |
# Save the mesh as a GLTF file | |
gltf_path = f"./models/{image_path.stem}.gltf" | |
o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True) | |
return gltf_path | |
# Define Gradio interface components | |
title = "Demo: Zero-Shot Depth Estimation with DPT + 3D Point Cloud" | |
description = ( | |
"This demo is a variation from the original " | |
"<a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. " | |
"It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object." | |
) | |
# Create Gradio sliders for resized_width and z_scale | |
resized_width_slider = gr.Slider( | |
minimum=400, | |
maximum=1600, | |
step=16, | |
value=800, | |
label="Resized Width", | |
info="Adjust the width to which the input image is resized." | |
) | |
z_scale_slider = gr.Slider( | |
minimum=160, | |
maximum=1024, | |
step=16, | |
value=208, | |
label="Z-Scale", | |
info="Adjust the scaling factor for the Z-axis in the 3D model." | |
) | |
examples = [["examples/" + img] for img in os.listdir("examples/")] | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=[ | |
gr.Image(type="filepath", label="Input Image"), | |
resized_width_slider, | |
z_scale_slider | |
], | |
outputs=[ | |
gr.Image(label="Predicted Depth", type="pil"), | |
gr.Model3D(label="3D Mesh Reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]), | |
gr.File(label="3D GLTF"), | |
], | |
title=title, | |
description=description, | |
examples=examples, | |
allow_flagging="never", | |
cache_examples=False, | |
theme="Surn/Beeuty" | |
) | |
if __name__ == "__main__": | |
iface.launch(debug=True, show_api=False, favicon_path="./favicon.ico") | |