File size: 7,022 Bytes
6840a20
 
 
6504ac8
 
1efa504
6840a20
 
 
6504ac8
6840a20
 
6504ac8
 
7185d11
6840a20
 
 
 
 
 
 
 
 
 
7185d11
6840a20
 
 
 
 
 
 
 
 
dbb99fd
6840a20
 
7185d11
6840a20
6504ac8
7185d11
 
 
6840a20
7599864
7185d11
6840a20
7185d11
6840a20
7185d11
6840a20
 
 
 
 
 
a0eef80
6840a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1efa504
 
6840a20
 
7185d11
fcf6bd9
 
1efa504
6840a20
 
 
 
 
 
 
 
 
 
 
7185d11
6840a20
fcf6bd9
1efa504
6840a20
 
 
 
 
 
 
 
7185d11
fcf6bd9
 
6840a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcf6bd9
6840a20
7185d11
6840a20
 
7185d11
 
fcf6bd9
 
6840a20
7185d11
6840a20
7185d11
 
6840a20
 
 
fcf6bd9
7185d11
 
 
6840a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbb99fd
7185d11
fcf6bd9
 
6840a20
 
 
 
 
fcf6bd9
6840a20
 
 
fcf6bd9
 
 
 
 
 
6840a20
fcf6bd9
6840a20
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
from pathlib import Path

import gradio as gr
import numpy as np
import open3d as o3d
import torch
from PIL import Image
from transformers import DPTForDepthEstimation, DPTImageProcessor

# Initialize the image processor and depth estimation model
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")


def process_image(image_path, resized_width=800, z_scale=208):
    """
    Processes the input image to generate a depth map and a 3D mesh reconstruction.

    Args:
        image_path (str): The file path to the input image.

    Returns:
        list: A list containing the depth image, 3D mesh reconstruction, and GLTF file path.
    """
    image_path = Path(image_path)
    if not image_path.exists():
        raise ValueError("Image file not found")

    # Load and resize the image
    image_raw = Image.open(image_path).convert("RGB")
    print(f"Original size: {image_raw.size}")
    resized_height = int(resized_width * image_raw.size[1] / image_raw.size[0])
    image = image_raw.resize((resized_width, resized_height), Image.Resampling.LANCZOS)
    print(f"Resized size: {image.size}")

    # Prepare image for the model
    encoding = image_processor(image, return_tensors="pt")

    # Perform depth estimation
    with torch.no_grad():
        outputs = model(**encoding)
        predicted_depth = outputs.predicted_depth

    # Interpolate depth to match the image size
    prediction = torch.nn.functional.interpolate(
        predicted_depth.unsqueeze(1),
        size=(image.height, image.width),
        mode="bicubic",
        align_corners=True,
    ).squeeze()

    # Normalize the depth image to 8-bit
    prediction = prediction.cpu().numpy()
    depth_min, depth_max = prediction.min(), prediction.max()
    depth_image = ((prediction - depth_min) / (depth_max - depth_min) * 255).astype("uint8")

    try:
        gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=10, z_scale=z_scale)
    except Exception:
        gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=8, z_scale=z_scale)

    img = Image.fromarray(depth_image)
    return [img, gltf_path, gltf_path]


def create_3d_obj(rgb_image, raw_depth, image_path, depth=10, z_scale=200):
    """
    Creates a 3D object from RGB and depth images.

    Args:
        rgb_image (np.ndarray): The RGB image as a NumPy array.
        raw_depth (np.ndarray): The raw depth data.
        image_path (Path): The path to the original image.
        depth (int, optional): Depth parameter for Poisson reconstruction. Defaults to 10.
        z_scale (float, optional): Scaling factor for the Z-axis. Defaults to 200.

    Returns:
        str: The file path to the saved GLTF model.
    """
    # Normalize the depth image
    depth_image = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min()) * 255).astype("uint8")
    depth_o3d = o3d.geometry.Image(depth_image)
    image_o3d = o3d.geometry.Image(rgb_image)

    # Create RGBD image
    rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
        image_o3d, depth_o3d, convert_rgb_to_intensity=False
    )

    height, width = depth_image.shape

    # Define camera intrinsics
    camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(
        width,
        height,
        fx=1.0,
        fy=1.0,
        cx=width / 2.0,
        cy=height / 2.0,
    )

    # Generate point cloud from RGBD image
    pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)

    # Scale the Z dimension
    points = np.asarray(pcd.points)
    depth_scaled = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min())) * z_scale
    z_values = depth_scaled.flatten()[:len(points)]
    points[:, 2] *= z_values
    pcd.points = o3d.utility.Vector3dVector(points)

    # Estimate and orient normals
    pcd.estimate_normals(
        search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)
    )
    pcd.orient_normals_towards_camera_location(camera_location=np.array([0.0, 0.0, 2.0 ]))

    # Apply transformations
    pcd.transform([[1, 0, 0, 0],
                   [0, -1, 0, 0],
                   [0, 0, -1, 0],
                   [0, 0, 0, 1]])
    pcd.transform([[-1, 0, 0, 0],
                   [0, 1, 0, 0],
                   [0, 0, 1, 0],
                   [0, 0, 0, 1]])

    # Perform Poisson surface reconstruction
    print(f"Running Poisson surface reconstruction with depth {depth}")
    mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
        pcd, depth=depth, width=0, scale=1.1, linear_fit=True
    )
    print(f"Raw mesh vertices: {len(mesh_raw.vertices)}, triangles: {len(mesh_raw.triangles)}")

    # Simplify the mesh using vertex clustering
    voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / (max(width, height) * 0.8)
    mesh = mesh_raw.simplify_vertex_clustering(
        voxel_size=voxel_size,
        contraction=o3d.geometry.SimplificationContraction.Average,
    )
    print(f"Simplified mesh vertices: {len(mesh.vertices)}, triangles: {len(mesh.triangles)}")

    # Crop the mesh to the bounding box of the point cloud
    bbox = pcd.get_axis_aligned_bounding_box()
    mesh_crop = mesh.crop(bbox)

    # Save the mesh as a GLTF file
    gltf_path = f"./models/{image_path.stem}.gltf"
    o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True)
    return gltf_path


# Define Gradio interface components
title = "Demo: Zero-Shot Depth Estimation with DPT + 3D Point Cloud"
description = (
    "This demo is a variation from the original "
    "<a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. "
    "It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
)
# Create Gradio sliders for resized_width and z_scale
resized_width_slider = gr.Slider(
    minimum=400,
    maximum=1600,
    step=16,
    value=800,
    label="Resized Width",
    info="Adjust the width to which the input image is resized."
)

z_scale_slider = gr.Slider(
    minimum=160,
    maximum=1024,
    step=16,
    value=208,
    label="Z-Scale",
    info="Adjust the scaling factor for the Z-axis in the 3D model."
)
examples = [["examples/" + img] for img in os.listdir("examples/")]

iface = gr.Interface(
    fn=process_image,
        inputs=[
        gr.Image(type="filepath", label="Input Image"),
        resized_width_slider,
        z_scale_slider
    ],
    outputs=[
        gr.Image(label="Predicted Depth", type="pil"),
        gr.Model3D(label="3D Mesh Reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]),
        gr.File(label="3D GLTF"),
    ],
    title=title,
    description=description,
    examples=examples,
    allow_flagging="never",
    cache_examples=False,
    theme="Surn/Beeuty"
)

if __name__ == "__main__":
    iface.launch(debug=True, show_api=False, favicon_path="./favicon.ico")