Spaces:
Running
Running
File size: 4,500 Bytes
6504ac8 4e60720 1efa504 7185d11 dbb99fd 6504ac8 7185d11 dbb99fd fcf6bd9 dbb99fd 6504ac8 7185d11 6504ac8 7185d11 6504ac8 7599864 7185d11 4e60720 fcf6bd9 a0eef80 fcf6bd9 a0eef80 1efa504 7185d11 fcf6bd9 7185d11 1efa504 fcf6bd9 7185d11 fcf6bd9 1efa504 fcf6bd9 7185d11 fcf6bd9 7185d11 fcf6bd9 a0eef80 fcf6bd9 1efa504 7185d11 fcf6bd9 7185d11 dbb99fd fcf6bd9 7185d11 fcf6bd9 7185d11 fcf6bd9 7185d11 dbb99fd 7185d11 fcf6bd9 b37ecb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
import open3d as o3d
from pathlib import Path
import os
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
def process_image(image_path):
image_path = Path(image_path)
image_raw = Image.open(image_path)
image = image_raw.resize(
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
Image.Resampling.LANCZOS,
)
# prepare image for the model
encoding = feature_extractor(image, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model(**encoding)
predicted_depth = outputs.predicted_depth
# interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
depth_image = (output * 255 / np.max(output)).astype("uint8")
try:
gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
img = Image.fromarray(depth_image)
return [img, gltf_path, gltf_path]
except Exception as e:
gltf_path = create_3d_obj(np.array(image), depth_image, image_path, depth=8)
img = Image.fromarray(depth_image)
return [img, gltf_path, gltf_path]
except:
print("Error reconstructing 3D model")
raise Exception("Error reconstructing 3D model")
def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
depth_o3d = o3d.geometry.Image(depth_image)
image_o3d = o3d.geometry.Image(rgb_image)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False
)
w = int(depth_image.shape[1])
h = int(depth_image.shape[0])
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2)
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
print("normals")
pcd.normals = o3d.utility.Vector3dVector(
np.zeros((1, 3))
) # invalidate existing normals
pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)
)
pcd.orient_normals_towards_camera_location(
camera_location=np.array([0.0, 0.0, 1000.0])
)
pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
pcd.transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
print("run Poisson surface reconstruction")
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=depth, width=0, scale=1.1, linear_fit=True
)
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
print(f"voxel_size = {voxel_size:e}")
mesh = mesh_raw.simplify_vertex_clustering(
voxel_size=voxel_size,
contraction=o3d.geometry.SimplificationContraction.Average,
)
# vertices_to_remove = densities < np.quantile(densities, 0.001)
# mesh.remove_vertices_by_mask(vertices_to_remove)
bbox = pcd.get_axis_aligned_bounding_box()
mesh_crop = mesh.crop(bbox)
gltf_path = f"./{image_path.stem}.gltf"
o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True)
return gltf_path
title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
examples = [["examples/" + img] for img in os.listdir("examples/")]
iface = gr.Interface(
fn=process_image,
inputs=[gr.Image(type="filepath", label="Input Image")],
outputs=[
gr.Image(label="predicted depth", type="pil"),
gr.Model3D(label="3d mesh reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]),
gr.File(label="3d gLTF"),
],
title=title,
description=description,
examples=examples,
allow_flagging="never",
cache_examples=False,
)
iface.launch(debug=True, show_api=False)
|