Suriya13's picture
Create app.py
ea5a9be verified
raw
history blame
908 Bytes
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
model_id = "deepseek-ai/deepseek-coder-1.3b-base"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto", # Auto-detect GPU if available
torch_dtype=torch.float16 # Use FP16 for faster, lower-memory inference
)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
def generate_code(prompt):
response = pipe(prompt, max_new_tokens=200, temperature=0.7, do_sample=True)
return response[0]["generated_text"]
gr.Interface(
fn=generate_code,
inputs=gr.Textbox(lines=4, placeholder="Ask DeepSeek R1 something..."),
outputs="text",
title="🧠 DeepSeek Coder R1 (1.3B)",
description="Running open-source DeepSeek Coder model (1.3B) on Hugging Face Spaces."
).launch()