Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import torch | |
model_id = "deepseek-ai/deepseek-coder-1.3b-base" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", # Auto-detect GPU if available | |
torch_dtype=torch.float16 # Use FP16 for faster, lower-memory inference | |
) | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
def generate_code(prompt): | |
response = pipe(prompt, max_new_tokens=200, temperature=0.7, do_sample=True) | |
return response[0]["generated_text"] | |
gr.Interface( | |
fn=generate_code, | |
inputs=gr.Textbox(lines=4, placeholder="Ask DeepSeek R1 something..."), | |
outputs="text", | |
title="🧠 DeepSeek Coder R1 (1.3B)", | |
description="Running open-source DeepSeek Coder model (1.3B) on Hugging Face Spaces." | |
).launch() | |