# app.py import streamlit as st from PIL import Image import torch from transformers import AutoImageProcessor, AutoModelForImageClassification # Set up Streamlit page st.set_page_config(page_title="Skin AI Classifier", layout="centered") st.title("AI-Based Skin Condition Classifier") st.markdown("Upload a clear skin photo. The AI will suggest the likely skin condition.") # Upload image uploaded_file = st.file_uploader("Upload a skin photo (JPG, PNG)", type=["jpg", "jpeg", "png"]) # Load pre-trained model from Hugging Face (Anwarkh1) @st.cache_resource def load_model(): model_name = "Anwarkh1/Skin_Cancer-Image_Classification" processor = AutoImageProcessor.from_pretrained(model_name) model = AutoModelForImageClassification.from_pretrained(model_name) return processor, model processor, model = load_model() # Process and classify image if uploaded_file is not None: image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Uploaded Image", use_column_width=True) # Preprocess and predict inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1)[0] # Top predictions top_probs, top_indices = torch.topk(probs, k=3) class_names = model.config.id2label st.subheader("Prediction Results") for idx, prob in zip(top_indices, top_probs): label = class_names[idx.item()] st.write(f"**{label}** – {prob.item()*100:.2f}%") st.caption("Note: This AI tool is for support only. Always consult a certified dermatologist.")