Surbhi
Fix ui
7ca3ef9
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import json
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.impute import SimpleImputer
from imblearn.over_sampling import SMOTE
from sklearn.metrics import accuracy_score, classification_report, mean_squared_error, mean_absolute_error, r2_score
# Import ML Models
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.svm import SVC, SVR
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.linear_model import Perceptron
# Sidebar UI
st.sidebar.title("AI Code Generator 🧠")
st.sidebar.markdown("Generate AI models instantly!")
# Model Selection
model_options = ["KNN", "SVM", "Random Forest", "Decision Tree", "Perceptron"]
model = st.sidebar.selectbox("Choose a Model:", model_options)
# Task Selection
task_options = ["Classification", "Regression"]
task = st.sidebar.selectbox("Choose a Task:", task_options)
# Problem Selection based on Task and Model
problems = {
"Classification": {
"KNN": ["Spam Detection", "Disease Prediction"],
"SVM": ["Image Recognition", "Text Classification"],
"Random Forest": ["Fraud Detection", "Customer Segmentation"],
"Decision Tree": ["Loan Approval", "Churn Prediction"],
"Perceptron": ["Handwritten Digit Recognition", "Sentiment Analysis"]
},
"Regression": {
"KNN": ["House Price Prediction", "Stock Prediction"],
"SVM": ["Sales Forecasting", "Stock Market Trends"],
"Random Forest": ["Energy Consumption", "Patient Survival Prediction"],
"Decision Tree": ["House Price Estimation", "Revenue Prediction"],
"Perceptron": ["Weather Forecasting", "Traffic Flow Prediction"]
}
}
problem = st.sidebar.selectbox("Choose a Problem:", problems[task][model], key="problem_selection")
# Dataset Selection (Simulated dataset paths)
dataset_mapping = {
"Spam Detection": "datasets/spam_detection.csv",
"Disease Prediction": "datasets/disease_prediction.csv",
"Image Recognition": "datasets/image_recognition.csv",
"Text Classification": "datasets/text_classification.csv",
"Fraud Detection": "datasets/fraud_detection.csv",
"Customer Segmentation": "datasets/customer_segmentation.csv",
"Loan Approval": "datasets/loan_approval.csv",
"Churn Prediction": "datasets/churn_prediction.csv",
"Handwritten Digit Recognition": "datasets/handwritten_digit_recognition.csv",
"Sentiment Analysis": "datasets/sentiment_analysis.csv",
"House Price Prediction": "datasets/house_price_prediction.csv",
"Stock Prediction": "datasets/stock_prediction.csv",
"Sales Forecasting": "datasets/sales_forecasting.csv",
"Stock Market Trends": "datasets/stock_market_trends.csv",
"Energy Consumption": "datasets/energy_consumption.csv",
"Patient Survival Prediction": "datasets/patient_survival_prediction.csv",
"House Price Estimation": "datasets/house_price_estimation.csv",
"Revenue Prediction": "datasets/revenue_prediction.csv",
"Weather Forecasting": "datasets/weather_forecasting.csv",
"Traffic Flow Prediction": "datasets/traffic_flow_prediction.csv"
}
dataset_path = dataset_mapping.get(problem, "datasets/spam_detection.csv")
df = pd.read_csv(dataset_path)
# Model Initialization
model_mapping = {
"KNN": KNeighborsClassifier(n_neighbors=5) if task == "Classification" else KNeighborsRegressor(),
"SVM": SVC() if task == "Classification" else SVR(),
"Random Forest": RandomForestClassifier() if task == "Classification" else RandomForestRegressor(),
"Decision Tree": DecisionTreeClassifier() if task == "Classification" else DecisionTreeRegressor(),
"Perceptron": Perceptron()
}
# Generated AI Code
generated_code = f"""
# AI Model Code
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from {model_mapping[model].__class__.__module__} import {model_mapping[model].__class__.__name__}
# Load Data
df = pd.read_csv('{dataset_path}')
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
# Train/Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Train Model
model = {model_mapping[model].__class__.__name__}()
model.fit(X_train, y_train)
# Predict
y_pred = model.predict(X_test)
print(y_pred)
"""
# Display AI Code
st.subheader("πŸ“œ Generated AI Model Code")
st.code(generated_code, language="python")
# Download Buttons (Top of UI)
st.download_button("πŸ“₯ Download Python Script (.py)", generated_code, file_name="ai_model.py", mime="text/x-python")
st.download_button("πŸ“₯ Download Jupyter Notebook (.ipynb)", json.dumps({"cells": [{"cell_type": "code", "source": generated_code.split("\n"), "metadata": {}}], "metadata": {}, "nbformat": 4, "nbformat_minor": 2}), file_name="ai_model.ipynb", mime="application/json")
# Display dataset
st.subheader("πŸ“Š Sample Dataset")
st.write(df.head())
# Preprocessing Steps
st.subheader("πŸ“Œ Preprocessing Steps")
st.markdown("""
- βœ… Handle Missing Values
- βœ… Encoding Categorical Variables
- βœ… Feature Scaling
- βœ… Feature Selection
- βœ… Handling Imbalanced Data using **SMOTE**
""")
# Handle missing values
imputer = SimpleImputer(strategy='mean')
df = df.apply(lambda col: imputer.fit_transform(col.values.reshape(-1, 1)).flatten() if col.dtypes == 'float64' else col)
# Encoding categorical variables
label_encoders = {}
for col in df.select_dtypes(include=['object']).columns:
label_encoders[col] = LabelEncoder()
df[col] = label_encoders[col].fit_transform(df[col])
# Split Data
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Feature Scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Feature Selection
selector = SelectKBest(score_func=f_classif, k=min(5, X.shape[1])) # Ensure k does not exceed available features
X_train = selector.fit_transform(X_train, y_train)
X_test = selector.transform(X_test)
# Handle imbalanced data (only for classification)
if task == "Classification":
if len(set(y_train)) > 1 and len(y_train) > 5: # Avoid SMOTE errors
smote = SMOTE()
X_train, y_train = smote.fit_resample(X_train, y_train)
model_instance = model_mapping[model]
# Train Model
model_instance.fit(X_train, y_train)
y_pred = model_instance.predict(X_test)
# Model Evaluation
st.subheader("πŸ“Š Model Evaluation")
if task == "Classification":
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, output_dict=True)
st.write(f"**Accuracy:** {accuracy:.2f}")
st.json(report)
elif task == "Regression":
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
st.write(f"**Mean Squared Error (MSE):** {mse:.4f}")
st.write(f"**Mean Absolute Error (MAE):** {mae:.4f}")
st.write(f"**RΒ² Score:** {r2:.4f}")
# Data Visualization
st.subheader("πŸ“ˆ Data Visualization")
# Heatmap
st.write("### πŸ”₯ Feature Correlation")
fig, ax = plt.subplots(figsize=(8, 5))
sns.heatmap(df.corr(), annot=True, cmap="coolwarm", ax=ax)
st.pyplot(fig)
# Feature Importance (for tree-based models)
if model in ["Random Forest", "Decision Tree"]:
feature_importances = model_instance.feature_importances_
feature_names = X.columns
importance_df = pd.DataFrame({"Feature": feature_names, "Importance": feature_importances}).sort_values(by="Importance", ascending=False)
st.write("### 🌟 Feature Importance")
fig, ax = plt.subplots()
sns.barplot(x=importance_df["Importance"], y=importance_df["Feature"], ax=ax)
st.pyplot(fig)