Surbhi
Fix model
f03eea4
raw
history blame
8.24 kB
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import json
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.impute import SimpleImputer
from imblearn.over_sampling import SMOTE
from sklearn.metrics import accuracy_score, classification_report, mean_squared_error, mean_absolute_error, r2_score
# Import ML Models
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.svm import SVC, SVR
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.linear_model import Perceptron
# Sidebar UI
st.sidebar.title("AI Code Generator 🧠")
st.sidebar.markdown("Generate AI models instantly!")
# Model Selection
model_options = ["KNN", "SVM", "Random Forest", "Decision Tree", "Perceptron"]
model = st.sidebar.selectbox("Choose a Model:", model_options)
# Task Selection
task_options = ["Classification", "Regression"]
task = st.sidebar.selectbox("Choose a Task:", task_options)
# Problem Selection based on Task and Model
problems = {
"Classification": {
"KNN": ["Spam Detection", "Disease Prediction"],
"SVM": ["Image Recognition", "Text Classification"],
"Random Forest": ["Fraud Detection", "Customer Segmentation"],
"Decision Tree": ["Loan Approval", "Churn Prediction"],
"Perceptron": ["Handwritten Digit Recognition", "Sentiment Analysis"]
},
"Regression": {
"KNN": ["House Price Prediction", "Stock Prediction"],
"SVM": ["Sales Forecasting", "Stock Market Trends"],
"Random Forest": ["Energy Consumption", "Patient Survival Prediction"],
"Decision Tree": ["House Price Estimation", "Revenue Prediction"],
"Perceptron": ["Weather Forecasting", "Traffic Flow Prediction"]
}
}
problem = st.sidebar.selectbox("Choose a Problem:", problems[task][model], key="problem_selection")
# Dataset Selection (Simulated dataset paths)
dataset_mapping = {
"Spam Detection": "datasets/spam_detection.csv",
"Disease Prediction": "datasets/disease_prediction.csv",
"Image Recognition": "datasets/image_recognition.csv",
"Text Classification": "datasets/text_classification.csv",
"Fraud Detection": "datasets/fraud_detection.csv",
"Customer Segmentation": "datasets/customer_segmentation.csv",
"Loan Approval": "datasets/loan_approval.csv",
"Churn Prediction": "datasets/churn_prediction.csv",
"Handwritten Digit Recognition": "datasets/handwritten_digit_recognition.csv",
"Sentiment Analysis": "datasets/sentiment_analysis.csv",
"House Price Prediction": "datasets/house_price_prediction.csv",
"Stock Prediction": "datasets/stock_prediction.csv",
"Sales Forecasting": "datasets/sales_forecasting.csv",
"Stock Market Trends": "datasets/stock_market_trends.csv",
"Energy Consumption": "datasets/energy_consumption.csv",
"Patient Survival Prediction": "datasets/patient_survival_prediction.csv",
"House Price Estimation": "datasets/house_price_estimation.csv",
"Revenue Prediction": "datasets/revenue_prediction.csv",
"Weather Forecasting": "datasets/weather_forecasting.csv",
"Traffic Flow Prediction": "datasets/traffic_flow_prediction.csv"
}
dataset_path = dataset_mapping.get(problem, "datasets/spam_detection.csv")
df = pd.read_csv(dataset_path)
# Model Initialization
model_mapping = {
"KNN": KNeighborsClassifier(n_neighbors=5) if task == "Classification" else KNeighborsRegressor(),
"SVM": SVC() if task == "Classification" else SVR(),
"Random Forest": RandomForestClassifier() if task == "Classification" else RandomForestRegressor(),
"Decision Tree": DecisionTreeClassifier() if task == "Classification" else DecisionTreeRegressor(),
"Perceptron": Perceptron()
}
# Generated AI Code
generated_code = f"""
# AI Model Code
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from {model_mapping[model].__class__.__module__} import {model_mapping[model].__class__.__name__}
# Load Data
df = pd.read_csv('{dataset_path}')
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
# Train/Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Train Model
model = {model_mapping[model].__class__.__name__}()
model.fit(X_train, y_train)
# Predict
y_pred = model.predict(X_test)
print(y_pred)
"""
# Display AI Code
st.subheader("πŸ“œ Generated AI Model Code")
st.code(generated_code, language="python")
# Download Buttons (Top of UI)
st.download_button("πŸ“₯ Download Python Script (.py)", generated_code, file_name="ai_model.py", mime="text/x-python")
st.download_button("πŸ“₯ Download Jupyter Notebook (.ipynb)", json.dumps({"cells": [{"cell_type": "code", "source": generated_code.split("\n"), "metadata": {}}], "metadata": {}, "nbformat": 4, "nbformat_minor": 2}), file_name="ai_model.ipynb", mime="application/json")
# Display dataset
st.subheader("πŸ“Š Sample Dataset")
st.write(df.head())
# Preprocessing Steps
st.subheader("πŸ“Œ Preprocessing Steps")
st.markdown("""
- βœ… Handle Missing Values
- βœ… Encoding Categorical Variables
- βœ… Feature Scaling
- βœ… Feature Selection
- βœ… Handling Imbalanced Data using **SMOTE**
""")
# Handle missing values
imputer = SimpleImputer(strategy='mean')
df = df.apply(lambda col: imputer.fit_transform(col.values.reshape(-1, 1)).flatten() if col.dtypes == 'float64' else col)
# Encoding categorical variables
label_encoders = {}
for col in df.select_dtypes(include=['object']).columns:
label_encoders[col] = LabelEncoder()
df[col] = label_encoders[col].fit_transform(df[col])
# Split Data
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Feature Scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Feature Selection
selector = SelectKBest(score_func=f_classif, k=min(5, X.shape[1])) # Ensure k does not exceed available features
X_train = selector.fit_transform(X_train, y_train)
X_test = selector.transform(X_test)
# Handle imbalanced data (only for classification)
if task == "Classification":
if len(set(y_train)) > 1 and len(y_train) > 5: # Avoid SMOTE errors
smote = SMOTE()
X_train, y_train = smote.fit_resample(X_train, y_train)
model_instance = model_mapping[model]
# Train Model
model_instance.fit(X_train, y_train)
y_pred = model_instance.predict(X_test)
# Model Evaluation
st.subheader("πŸ“Š Model Evaluation")
if task == "Classification":
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, output_dict=True)
st.write(f"**Accuracy:** {accuracy:.2f}")
st.json(report)
elif task == "Regression":
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
st.write(f"**Mean Squared Error (MSE):** {mse:.4f}")
st.write(f"**Mean Absolute Error (MAE):** {mae:.4f}")
st.write(f"**RΒ² Score:** {r2:.4f}")
# Data Visualization
st.subheader("πŸ“ˆ Data Visualization")
# Heatmap
st.write("### πŸ”₯ Feature Correlation")
fig, ax = plt.subplots(figsize=(8, 5))
sns.heatmap(df.corr(), annot=True, cmap="coolwarm", ax=ax)
st.pyplot(fig)
# Feature Importance (for tree-based models)
if model in ["Random Forest", "Decision Tree"]:
feature_importances = model_instance.feature_importances_
feature_names = X.columns
importance_df = pd.DataFrame({"Feature": feature_names, "Importance": feature_importances}).sort_values(by="Importance", ascending=False)
st.write("### 🌟 Feature Importance")
fig, ax = plt.subplots()
sns.barplot(x=importance_df["Importance"], y=importance_df["Feature"], ax=ax)
st.pyplot(fig)
st.success("Code generated! Download and start using it! πŸš€")