File size: 6,771 Bytes
11ccb1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import cv2
import numpy as np
import torch
import os
from einops import rearrange
from annotator.base_annotator import BaseProcessor
from .midas.dpt_depth import DPTDepthModel
from .midas.midas_net import MidasNet
from .midas.midas_net_custom import MidasNet_small
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
from torchvision.transforms import Compose

remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"


def load_midas_transform(model_type):
    # https://github.com/isl-org/MiDaS/blob/master/run.py
    # load transform only
    if model_type == "dpt_large":  # DPT-Large
        net_w, net_h = 384, 384
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "dpt_hybrid":  # DPT-Hybrid
        net_w, net_h = 384, 384
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "midas_v21":
        net_w, net_h = 384, 384
        resize_mode = "upper_bound"
        normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

    elif model_type == "midas_v21_small":
        net_w, net_h = 256, 256
        resize_mode = "upper_bound"
        normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

    else:
        assert False, f"model_type '{model_type}' not implemented, use: --model_type large"

    transform = Compose(
        [
            Resize(
                net_w,
                net_h,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method=resize_mode,
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            normalization,
            PrepareForNet(),
        ]
    )

    return transform


class MidasProcessor(BaseProcessor):
    MODEL_TYPES_TORCH_HUB = [
        "DPT_Large",
        "DPT_Hybrid",
        "MiDaS_small"
    ]
    MODEL_TYPES_ISL = [
        "dpt_large",
        "dpt_hybrid",
        "midas_v21",
        "midas_v21_small",
    ]

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.model_dir = os.path.join(self.models_path, "midas")
        self.model = None

    def load_model(self, model_type):
        ISL_PATHS = {
            "dpt_large": os.path.join(self.model_dir, "dpt_large-midas-2f21e586.pt"),
            "dpt_hybrid": os.path.join(self.model_dir, "dpt_hybrid-midas-501f0c75.pt"),
            "midas_v21": "",
            "midas_v21_small": "",
        }
        # https://github.com/isl-org/MiDaS/blob/master/run.py
        # load network
        model_path = ISL_PATHS[model_type]
        # old_model_path = OLD_ISL_PATHS[model_type]
        if model_type == "dpt_large":  # DPT-Large
            model = DPTDepthModel(
                path=model_path,
                backbone="vitl16_384",
                non_negative=True,
            )
            net_w, net_h = 384, 384
            resize_mode = "minimal"
            normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

        elif model_type == "dpt_hybrid":  # DPT-Hybrid
            if not os.path.exists(model_path):
                from basicsr.utils.download_util import load_file_from_url
                load_file_from_url(remote_model_path, model_dir=self.model_dir)

            model = DPTDepthModel(
                path=model_path,
                backbone="vitb_rn50_384",
                non_negative=True,
            )
            net_w, net_h = 384, 384
            resize_mode = "minimal"
            normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

        elif model_type == "midas_v21":
            model = MidasNet(model_path, non_negative=True)
            net_w, net_h = 384, 384
            resize_mode = "upper_bound"
            normalization = NormalizeImage(
                mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
            )

        elif model_type == "midas_v21_small":
            model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
                                   non_negative=True, blocks={'expand': True})
            net_w, net_h = 256, 256
            resize_mode = "upper_bound"
            normalization = NormalizeImage(
                mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
            )

        else:
            print(f"model_type '{model_type}' not implemented, use: --model_type large")
            assert False

        transform = Compose(
            [
                Resize(
                    net_w,
                    net_h,
                    resize_target=None,
                    keep_aspect_ratio=True,
                    ensure_multiple_of=32,
                    resize_method=resize_mode,
                    image_interpolation_method=cv2.INTER_CUBIC,
                ),
                normalization,
                PrepareForNet(),
            ]
        )

        model.eval()
        self.model = model

    def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1, *args, **kwargs):
        if self.model is None:
            self.load_model(model_type="dpt_hybrid")
        if self.device != 'mps':
            self.model = self.model.to(self.device)
        assert input_image.ndim == 3
        image_depth = input_image
        with torch.no_grad():
            image_depth = torch.from_numpy(image_depth).float()
            if self.device != 'mps':
                image_depth = image_depth.to(self.device)
            image_depth = image_depth / 127.5 - 1.0
            image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
            depth = self.model(image_depth)[0]

            depth_pt = depth.clone()
            depth_pt -= torch.min(depth_pt)
            depth_pt /= torch.max(depth_pt)
            depth_pt = depth_pt.cpu().numpy()
            depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)

            depth_np = depth.cpu().numpy()
            x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
            y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
            z = np.ones_like(x) * a
            x[depth_pt < bg_th] = 0
            y[depth_pt < bg_th] = 0
            normal = np.stack([x, y, z], axis=2)
            normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
            normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1]

            return depth_image, normal_image

    def unload_midas_model(self):
        if self.model is not None:
            self.model = self.model.cpu()