Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -63,7 +63,7 @@ def load_custom_model(model_key):
|
|
63 |
# Pass model_name to config for correct model instantiation
|
64 |
config = {"model": {"name": model_info["model_name"]}}
|
65 |
model = XrayReg.load_from_checkpoint(model_info["ckpt"], map_location="cpu")
|
66 |
-
model = model.model
|
67 |
model.eval()
|
68 |
for param in model.parameters():
|
69 |
param.requires_grad = True
|
@@ -100,7 +100,7 @@ def predict_and_cam_custom(inp, model):
|
|
100 |
# GradCAM for regression: use last conv layer, target output
|
101 |
from pytorch_grad_cam import GradCAM
|
102 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
103 |
-
model = model.cuda()
|
104 |
target_layers = [
|
105 |
layer
|
106 |
for name, layer in model.named_modules()
|
@@ -156,7 +156,7 @@ def download_models():
|
|
156 |
local_dir=local_dir,
|
157 |
)
|
158 |
|
159 |
-
|
160 |
def main():
|
161 |
# Download models if not already present
|
162 |
try:
|
|
|
63 |
# Pass model_name to config for correct model instantiation
|
64 |
config = {"model": {"name": model_info["model_name"]}}
|
65 |
model = XrayReg.load_from_checkpoint(model_info["ckpt"], map_location="cpu")
|
66 |
+
model = model.model.cuda() if torch.cuda.is_available() else model.model
|
67 |
model.eval()
|
68 |
for param in model.parameters():
|
69 |
param.requires_grad = True
|
|
|
100 |
# GradCAM for regression: use last conv layer, target output
|
101 |
from pytorch_grad_cam import GradCAM
|
102 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
103 |
+
# model = model.cuda()
|
104 |
target_layers = [
|
105 |
layer
|
106 |
for name, layer in model.named_modules()
|
|
|
156 |
local_dir=local_dir,
|
157 |
)
|
158 |
|
159 |
+
@spaces.GPU
|
160 |
def main():
|
161 |
# Download models if not already present
|
162 |
try:
|