Spaces:
Build error
Build error
Create matlab_cp2tform.py
Browse files- utils/matlab_cp2tform.py +338 -0
utils/matlab_cp2tform.py
ADDED
|
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on Tue Jul 11 06:54:28 2017
|
| 4 |
+
@author: zhaoyafei
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
from numpy.linalg import inv, norm, lstsq
|
| 9 |
+
from numpy.linalg import matrix_rank as rank
|
| 10 |
+
|
| 11 |
+
class MatlabCp2tormException(Exception):
|
| 12 |
+
def __str__(self):
|
| 13 |
+
return 'In File {}:{}'.format(
|
| 14 |
+
__file__, super.__str__(self))
|
| 15 |
+
|
| 16 |
+
def tformfwd(trans, uv):
|
| 17 |
+
"""
|
| 18 |
+
Function:
|
| 19 |
+
----------
|
| 20 |
+
apply affine transform 'trans' to uv
|
| 21 |
+
Parameters:
|
| 22 |
+
----------
|
| 23 |
+
@trans: 3x3 np.array
|
| 24 |
+
transform matrix
|
| 25 |
+
@uv: Kx2 np.array
|
| 26 |
+
each row is a pair of coordinates (x, y)
|
| 27 |
+
Returns:
|
| 28 |
+
----------
|
| 29 |
+
@xy: Kx2 np.array
|
| 30 |
+
each row is a pair of transformed coordinates (x, y)
|
| 31 |
+
"""
|
| 32 |
+
uv = np.hstack((
|
| 33 |
+
uv, np.ones((uv.shape[0], 1))
|
| 34 |
+
))
|
| 35 |
+
xy = np.dot(uv, trans)
|
| 36 |
+
xy = xy[:, 0:-1]
|
| 37 |
+
return xy
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def tforminv(trans, uv):
|
| 41 |
+
"""
|
| 42 |
+
Function:
|
| 43 |
+
----------
|
| 44 |
+
apply the inverse of affine transform 'trans' to uv
|
| 45 |
+
Parameters:
|
| 46 |
+
----------
|
| 47 |
+
@trans: 3x3 np.array
|
| 48 |
+
transform matrix
|
| 49 |
+
@uv: Kx2 np.array
|
| 50 |
+
each row is a pair of coordinates (x, y)
|
| 51 |
+
Returns:
|
| 52 |
+
----------
|
| 53 |
+
@xy: Kx2 np.array
|
| 54 |
+
each row is a pair of inverse-transformed coordinates (x, y)
|
| 55 |
+
"""
|
| 56 |
+
Tinv = inv(trans)
|
| 57 |
+
xy = tformfwd(Tinv, uv)
|
| 58 |
+
return xy
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def findNonreflectiveSimilarity(uv, xy, options=None):
|
| 62 |
+
|
| 63 |
+
options = {'K': 2}
|
| 64 |
+
|
| 65 |
+
K = options['K']
|
| 66 |
+
M = xy.shape[0]
|
| 67 |
+
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
|
| 68 |
+
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
|
| 69 |
+
# print('--->x, y:\n', x, y
|
| 70 |
+
|
| 71 |
+
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
|
| 72 |
+
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
|
| 73 |
+
X = np.vstack((tmp1, tmp2))
|
| 74 |
+
# print('--->X.shape: ', X.shape
|
| 75 |
+
# print('X:\n', X
|
| 76 |
+
|
| 77 |
+
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
|
| 78 |
+
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
|
| 79 |
+
U = np.vstack((u, v))
|
| 80 |
+
# print('--->U.shape: ', U.shape
|
| 81 |
+
# print('U:\n', U
|
| 82 |
+
|
| 83 |
+
# We know that X * r = U
|
| 84 |
+
if rank(X) >= 2 * K:
|
| 85 |
+
r, _, _, _ = lstsq(X, U)
|
| 86 |
+
r = np.squeeze(r)
|
| 87 |
+
else:
|
| 88 |
+
raise Exception('cp2tform:twoUniquePointsReq')
|
| 89 |
+
|
| 90 |
+
# print('--->r:\n', r
|
| 91 |
+
|
| 92 |
+
sc = r[0]
|
| 93 |
+
ss = r[1]
|
| 94 |
+
tx = r[2]
|
| 95 |
+
ty = r[3]
|
| 96 |
+
|
| 97 |
+
Tinv = np.array([
|
| 98 |
+
[sc, -ss, 0],
|
| 99 |
+
[ss, sc, 0],
|
| 100 |
+
[tx, ty, 1]
|
| 101 |
+
])
|
| 102 |
+
|
| 103 |
+
# print('--->Tinv:\n', Tinv
|
| 104 |
+
|
| 105 |
+
T = inv(Tinv)
|
| 106 |
+
# print('--->T:\n', T
|
| 107 |
+
|
| 108 |
+
T[:, 2] = np.array([0, 0, 1])
|
| 109 |
+
|
| 110 |
+
return T, Tinv
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def findSimilarity(uv, xy, options=None):
|
| 114 |
+
|
| 115 |
+
options = {'K': 2}
|
| 116 |
+
|
| 117 |
+
# uv = np.array(uv)
|
| 118 |
+
# xy = np.array(xy)
|
| 119 |
+
|
| 120 |
+
# Solve for trans1
|
| 121 |
+
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
|
| 122 |
+
|
| 123 |
+
# Solve for trans2
|
| 124 |
+
|
| 125 |
+
# manually reflect the xy data across the Y-axis
|
| 126 |
+
xyR = xy
|
| 127 |
+
xyR[:, 0] = -1 * xyR[:, 0]
|
| 128 |
+
|
| 129 |
+
trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
|
| 130 |
+
|
| 131 |
+
# manually reflect the tform to undo the reflection done on xyR
|
| 132 |
+
TreflectY = np.array([
|
| 133 |
+
[-1, 0, 0],
|
| 134 |
+
[0, 1, 0],
|
| 135 |
+
[0, 0, 1]
|
| 136 |
+
])
|
| 137 |
+
|
| 138 |
+
trans2 = np.dot(trans2r, TreflectY)
|
| 139 |
+
|
| 140 |
+
# Figure out if trans1 or trans2 is better
|
| 141 |
+
xy1 = tformfwd(trans1, uv)
|
| 142 |
+
norm1 = norm(xy1 - xy)
|
| 143 |
+
|
| 144 |
+
xy2 = tformfwd(trans2, uv)
|
| 145 |
+
norm2 = norm(xy2 - xy)
|
| 146 |
+
|
| 147 |
+
if norm1 <= norm2:
|
| 148 |
+
return trans1, trans1_inv
|
| 149 |
+
else:
|
| 150 |
+
trans2_inv = inv(trans2)
|
| 151 |
+
return trans2, trans2_inv
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def get_similarity_transform(src_pts, dst_pts, reflective=True):
|
| 155 |
+
"""
|
| 156 |
+
Function:
|
| 157 |
+
----------
|
| 158 |
+
Find Similarity Transform Matrix 'trans':
|
| 159 |
+
u = src_pts[:, 0]
|
| 160 |
+
v = src_pts[:, 1]
|
| 161 |
+
x = dst_pts[:, 0]
|
| 162 |
+
y = dst_pts[:, 1]
|
| 163 |
+
[x, y, 1] = [u, v, 1] * trans
|
| 164 |
+
Parameters:
|
| 165 |
+
----------
|
| 166 |
+
@src_pts: Kx2 np.array
|
| 167 |
+
source points, each row is a pair of coordinates (x, y)
|
| 168 |
+
@dst_pts: Kx2 np.array
|
| 169 |
+
destination points, each row is a pair of transformed
|
| 170 |
+
coordinates (x, y)
|
| 171 |
+
@reflective: True or False
|
| 172 |
+
if True:
|
| 173 |
+
use reflective similarity transform
|
| 174 |
+
else:
|
| 175 |
+
use non-reflective similarity transform
|
| 176 |
+
Returns:
|
| 177 |
+
----------
|
| 178 |
+
@trans: 3x3 np.array
|
| 179 |
+
transform matrix from uv to xy
|
| 180 |
+
trans_inv: 3x3 np.array
|
| 181 |
+
inverse of trans, transform matrix from xy to uv
|
| 182 |
+
"""
|
| 183 |
+
|
| 184 |
+
if reflective:
|
| 185 |
+
trans, trans_inv = findSimilarity(src_pts, dst_pts)
|
| 186 |
+
else:
|
| 187 |
+
trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
|
| 188 |
+
|
| 189 |
+
return trans, trans_inv
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def cvt_tform_mat_for_cv2(trans):
|
| 193 |
+
"""
|
| 194 |
+
Function:
|
| 195 |
+
----------
|
| 196 |
+
Convert Transform Matrix 'trans' into 'cv2_trans' which could be
|
| 197 |
+
directly used by cv2.warpAffine():
|
| 198 |
+
u = src_pts[:, 0]
|
| 199 |
+
v = src_pts[:, 1]
|
| 200 |
+
x = dst_pts[:, 0]
|
| 201 |
+
y = dst_pts[:, 1]
|
| 202 |
+
[x, y].T = cv_trans * [u, v, 1].T
|
| 203 |
+
Parameters:
|
| 204 |
+
----------
|
| 205 |
+
@trans: 3x3 np.array
|
| 206 |
+
transform matrix from uv to xy
|
| 207 |
+
Returns:
|
| 208 |
+
----------
|
| 209 |
+
@cv2_trans: 2x3 np.array
|
| 210 |
+
transform matrix from src_pts to dst_pts, could be directly used
|
| 211 |
+
for cv2.warpAffine()
|
| 212 |
+
"""
|
| 213 |
+
cv2_trans = trans[:, 0:2].T
|
| 214 |
+
|
| 215 |
+
return cv2_trans
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
|
| 219 |
+
"""
|
| 220 |
+
Function:
|
| 221 |
+
----------
|
| 222 |
+
Find Similarity Transform Matrix 'cv2_trans' which could be
|
| 223 |
+
directly used by cv2.warpAffine():
|
| 224 |
+
u = src_pts[:, 0]
|
| 225 |
+
v = src_pts[:, 1]
|
| 226 |
+
x = dst_pts[:, 0]
|
| 227 |
+
y = dst_pts[:, 1]
|
| 228 |
+
[x, y].T = cv_trans * [u, v, 1].T
|
| 229 |
+
Parameters:
|
| 230 |
+
----------
|
| 231 |
+
@src_pts: Kx2 np.array
|
| 232 |
+
source points, each row is a pair of coordinates (x, y)
|
| 233 |
+
@dst_pts: Kx2 np.array
|
| 234 |
+
destination points, each row is a pair of transformed
|
| 235 |
+
coordinates (x, y)
|
| 236 |
+
reflective: True or False
|
| 237 |
+
if True:
|
| 238 |
+
use reflective similarity transform
|
| 239 |
+
else:
|
| 240 |
+
use non-reflective similarity transform
|
| 241 |
+
Returns:
|
| 242 |
+
----------
|
| 243 |
+
@cv2_trans: 2x3 np.array
|
| 244 |
+
transform matrix from src_pts to dst_pts, could be directly used
|
| 245 |
+
for cv2.warpAffine()
|
| 246 |
+
"""
|
| 247 |
+
trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
|
| 248 |
+
cv2_trans = cvt_tform_mat_for_cv2(trans)
|
| 249 |
+
|
| 250 |
+
return cv2_trans
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
if __name__ == '__main__':
|
| 254 |
+
"""
|
| 255 |
+
u = [0, 6, -2]
|
| 256 |
+
v = [0, 3, 5]
|
| 257 |
+
x = [-1, 0, 4]
|
| 258 |
+
y = [-1, -10, 4]
|
| 259 |
+
# In Matlab, run:
|
| 260 |
+
#
|
| 261 |
+
# uv = [u'; v'];
|
| 262 |
+
# xy = [x'; y'];
|
| 263 |
+
# tform_sim=cp2tform(uv,xy,'similarity');
|
| 264 |
+
#
|
| 265 |
+
# trans = tform_sim.tdata.T
|
| 266 |
+
# ans =
|
| 267 |
+
# -0.0764 -1.6190 0
|
| 268 |
+
# 1.6190 -0.0764 0
|
| 269 |
+
# -3.2156 0.0290 1.0000
|
| 270 |
+
# trans_inv = tform_sim.tdata.Tinv
|
| 271 |
+
# ans =
|
| 272 |
+
#
|
| 273 |
+
# -0.0291 0.6163 0
|
| 274 |
+
# -0.6163 -0.0291 0
|
| 275 |
+
# -0.0756 1.9826 1.0000
|
| 276 |
+
# xy_m=tformfwd(tform_sim, u,v)
|
| 277 |
+
#
|
| 278 |
+
# xy_m =
|
| 279 |
+
#
|
| 280 |
+
# -3.2156 0.0290
|
| 281 |
+
# 1.1833 -9.9143
|
| 282 |
+
# 5.0323 2.8853
|
| 283 |
+
# uv_m=tforminv(tform_sim, x,y)
|
| 284 |
+
#
|
| 285 |
+
# uv_m =
|
| 286 |
+
#
|
| 287 |
+
# 0.5698 1.3953
|
| 288 |
+
# 6.0872 2.2733
|
| 289 |
+
# -2.6570 4.3314
|
| 290 |
+
"""
|
| 291 |
+
u = [0, 6, -2]
|
| 292 |
+
v = [0, 3, 5]
|
| 293 |
+
x = [-1, 0, 4]
|
| 294 |
+
y = [-1, -10, 4]
|
| 295 |
+
|
| 296 |
+
uv = np.array((u, v)).T
|
| 297 |
+
xy = np.array((x, y)).T
|
| 298 |
+
|
| 299 |
+
print('\n--->uv:')
|
| 300 |
+
print(uv)
|
| 301 |
+
print('\n--->xy:')
|
| 302 |
+
print(xy)
|
| 303 |
+
|
| 304 |
+
trans, trans_inv = get_similarity_transform(uv, xy)
|
| 305 |
+
|
| 306 |
+
print('\n--->trans matrix:')
|
| 307 |
+
print(trans)
|
| 308 |
+
|
| 309 |
+
print('\n--->trans_inv matrix:')
|
| 310 |
+
print(trans_inv)
|
| 311 |
+
|
| 312 |
+
print('\n---> apply transform to uv')
|
| 313 |
+
print('\nxy_m = uv_augmented * trans')
|
| 314 |
+
uv_aug = np.hstack((
|
| 315 |
+
uv, np.ones((uv.shape[0], 1))
|
| 316 |
+
))
|
| 317 |
+
xy_m = np.dot(uv_aug, trans)
|
| 318 |
+
print(xy_m)
|
| 319 |
+
|
| 320 |
+
print('\nxy_m = tformfwd(trans, uv)')
|
| 321 |
+
xy_m = tformfwd(trans, uv)
|
| 322 |
+
print(xy_m)
|
| 323 |
+
|
| 324 |
+
print('\n---> apply inverse transform to xy')
|
| 325 |
+
print('\nuv_m = xy_augmented * trans_inv')
|
| 326 |
+
xy_aug = np.hstack((
|
| 327 |
+
xy, np.ones((xy.shape[0], 1))
|
| 328 |
+
))
|
| 329 |
+
uv_m = np.dot(xy_aug, trans_inv)
|
| 330 |
+
print(uv_m)
|
| 331 |
+
|
| 332 |
+
print('\nuv_m = tformfwd(trans_inv, xy)')
|
| 333 |
+
uv_m = tformfwd(trans_inv, xy)
|
| 334 |
+
print(uv_m)
|
| 335 |
+
|
| 336 |
+
uv_m = tforminv(trans, xy)
|
| 337 |
+
print('\nuv_m = tforminv(trans, xy)')
|
| 338 |
+
print(uv_m)
|