Spaces:
Build error
Build error
Create losses.py
Browse files- losses/losses.py +463 -0
losses/losses.py
ADDED
|
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import wandb
|
| 3 |
+
import cv2
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import numpy as np
|
| 6 |
+
from facenet_pytorch import MTCNN
|
| 7 |
+
from torchvision import transforms
|
| 8 |
+
from dreamsim import dreamsim
|
| 9 |
+
from einops import rearrange
|
| 10 |
+
import kornia.augmentation as K
|
| 11 |
+
import lpips
|
| 12 |
+
|
| 13 |
+
from pretrained_models.arcface import Backbone
|
| 14 |
+
from utils.vis_utils import add_text_to_image
|
| 15 |
+
from utils.utils import extract_faces_and_landmarks
|
| 16 |
+
import clip
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class Loss():
|
| 20 |
+
"""
|
| 21 |
+
General purpose loss class.
|
| 22 |
+
Mainly handles dtype and visualize_every_k.
|
| 23 |
+
keeps current iteration of loss, mainly for visualization purposes.
|
| 24 |
+
"""
|
| 25 |
+
def __init__(self, visualize_every_k=-1, dtype=torch.float32, accelerator=None, **kwargs):
|
| 26 |
+
self.visualize_every_k = visualize_every_k
|
| 27 |
+
self.iteration = -1
|
| 28 |
+
self.dtype=dtype
|
| 29 |
+
self.accelerator = accelerator
|
| 30 |
+
|
| 31 |
+
def __call__(self, **kwargs):
|
| 32 |
+
self.iteration += 1
|
| 33 |
+
return self.forward(**kwargs)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class L1Loss(Loss):
|
| 37 |
+
"""
|
| 38 |
+
Simple L1 loss between predicted_pixel_values and pixel_values
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
|
| 42 |
+
encoder_pixel_values (torch.Tesnor): The input image to the encoder
|
| 43 |
+
"""
|
| 44 |
+
def forward(
|
| 45 |
+
self,
|
| 46 |
+
predict: torch.Tensor,
|
| 47 |
+
target: torch.Tensor,
|
| 48 |
+
**kwargs
|
| 49 |
+
) -> torch.Tensor:
|
| 50 |
+
return F.l1_loss(predict, target, reduction="mean")
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class DreamSIMLoss(Loss):
|
| 54 |
+
"""DreamSIM loss between predicted_pixel_values and pixel_values.
|
| 55 |
+
DreamSIM is similar to LPIPS (https://dreamsim-nights.github.io/) but is trained on more human defined similarity dataset
|
| 56 |
+
DreamSIM expects an RGB image of size 224x224 and values between 0 and 1. So we need to normalize the input images to 0-1 range and resize them to 224x224.
|
| 57 |
+
Args:
|
| 58 |
+
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
|
| 59 |
+
encoder_pixel_values (torch.Tesnor): The input image to the encoder
|
| 60 |
+
"""
|
| 61 |
+
def __init__(self, device: str='cuda:0', **kwargs):
|
| 62 |
+
super().__init__(**kwargs)
|
| 63 |
+
self.model, _ = dreamsim(pretrained=True, device=device)
|
| 64 |
+
self.model.to(dtype=self.dtype, device=device)
|
| 65 |
+
self.model = self.accelerator.prepare(self.model)
|
| 66 |
+
self.transforms = transforms.Compose([
|
| 67 |
+
transforms.Lambda(lambda x: (x + 1) / 2),
|
| 68 |
+
transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC)])
|
| 69 |
+
|
| 70 |
+
def forward(
|
| 71 |
+
self,
|
| 72 |
+
predicted_pixel_values: torch.Tensor,
|
| 73 |
+
encoder_pixel_values: torch.Tensor,
|
| 74 |
+
**kwargs,
|
| 75 |
+
) -> torch.Tensor:
|
| 76 |
+
predicted_pixel_values.to(dtype=self.dtype)
|
| 77 |
+
encoder_pixel_values.to(dtype=self.dtype)
|
| 78 |
+
return self.model(self.transforms(predicted_pixel_values), self.transforms(encoder_pixel_values)).mean()
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class LPIPSLoss(Loss):
|
| 82 |
+
"""LPIPS loss between predicted_pixel_values and pixel_values.
|
| 83 |
+
Args:
|
| 84 |
+
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
|
| 85 |
+
encoder_pixel_values (torch.Tesnor): The input image to the encoder
|
| 86 |
+
"""
|
| 87 |
+
def __init__(self, **kwargs):
|
| 88 |
+
super().__init__(**kwargs)
|
| 89 |
+
self.model = lpips.LPIPS(net='vgg')
|
| 90 |
+
self.model.to(dtype=self.dtype, device=self.accelerator.device)
|
| 91 |
+
self.model = self.accelerator.prepare(self.model)
|
| 92 |
+
|
| 93 |
+
def forward(self, predict, target, **kwargs):
|
| 94 |
+
predict.to(dtype=self.dtype)
|
| 95 |
+
target.to(dtype=self.dtype)
|
| 96 |
+
return self.model(predict, target).mean()
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class LCMVisualization(Loss):
|
| 100 |
+
"""Dummy loss used to visualize the LCM outputs
|
| 101 |
+
Args:
|
| 102 |
+
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
|
| 103 |
+
pixel_values (torch.Tensor): The input image to the decoder
|
| 104 |
+
encoder_pixel_values (torch.Tesnor): The input image to the encoder
|
| 105 |
+
"""
|
| 106 |
+
def forward(
|
| 107 |
+
self,
|
| 108 |
+
predicted_pixel_values: torch.Tensor,
|
| 109 |
+
pixel_values: torch.Tensor,
|
| 110 |
+
encoder_pixel_values: torch.Tensor,
|
| 111 |
+
timesteps: torch.Tensor,
|
| 112 |
+
**kwargs,
|
| 113 |
+
) -> None:
|
| 114 |
+
if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
|
| 115 |
+
predicted_pixel_values = rearrange(predicted_pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
|
| 116 |
+
pixel_values = rearrange(pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
|
| 117 |
+
encoder_pixel_values = rearrange(encoder_pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
|
| 118 |
+
image = np.hstack([encoder_pixel_values, pixel_values, predicted_pixel_values])
|
| 119 |
+
for tracker in self.accelerator.trackers:
|
| 120 |
+
if tracker.name == 'wandb':
|
| 121 |
+
tracker.log({"TrainVisualization": wandb.Image(image, caption=f"Encoder Input Image, Decoder Input Image, Predicted LCM Image. Timesteps {timesteps.cpu().tolist()}")})
|
| 122 |
+
return torch.tensor(0.0)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class L2Loss(Loss):
|
| 126 |
+
"""
|
| 127 |
+
Regular diffusion loss between predicted noise and target noise.
|
| 128 |
+
Args:
|
| 129 |
+
predicted_noise (torch.Tensor): noise predicted by the diffusion model
|
| 130 |
+
target_noise (torch.Tensor): actual noise added to the image.
|
| 131 |
+
"""
|
| 132 |
+
def forward(
|
| 133 |
+
self,
|
| 134 |
+
predict: torch.Tensor,
|
| 135 |
+
target: torch.Tensor,
|
| 136 |
+
weights: torch.Tensor = None,
|
| 137 |
+
**kwargs
|
| 138 |
+
) -> torch.Tensor:
|
| 139 |
+
if weights is not None:
|
| 140 |
+
loss = (predict.float() - target.float()).pow(2) * weights
|
| 141 |
+
return loss.mean()
|
| 142 |
+
return F.mse_loss(predict.float(), target.float(), reduction="mean")
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class HuberLoss(Loss):
|
| 146 |
+
"""Huber loss between predicted_pixel_values and pixel_values.
|
| 147 |
+
Args:
|
| 148 |
+
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
|
| 149 |
+
encoder_pixel_values (torch.Tesnor): The input image to the encoder
|
| 150 |
+
"""
|
| 151 |
+
def __init__(self, huber_c=0.001, **kwargs):
|
| 152 |
+
super().__init__(**kwargs)
|
| 153 |
+
self.huber_c = huber_c
|
| 154 |
+
|
| 155 |
+
def forward(
|
| 156 |
+
self,
|
| 157 |
+
predict: torch.Tensor,
|
| 158 |
+
target: torch.Tensor,
|
| 159 |
+
weights: torch.Tensor = None,
|
| 160 |
+
**kwargs
|
| 161 |
+
) -> torch.Tensor:
|
| 162 |
+
loss = torch.sqrt((predict.float() - target.float()) ** 2 + self.huber_c**2) - self.huber_c
|
| 163 |
+
if weights is not None:
|
| 164 |
+
return (loss * weights).mean()
|
| 165 |
+
return loss.mean()
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class WeightedNoiseLoss(Loss):
|
| 169 |
+
"""
|
| 170 |
+
Weighted diffusion loss between predicted noise and target noise.
|
| 171 |
+
Args:
|
| 172 |
+
predicted_noise (torch.Tensor): noise predicted by the diffusion model
|
| 173 |
+
target_noise (torch.Tensor): actual noise added to the image.
|
| 174 |
+
loss_batch_weights (torch.Tensor): weighting for each batch item. Can be used to e.g. zero-out loss for InstantID training if keypoint extraction fails.
|
| 175 |
+
"""
|
| 176 |
+
def forward(
|
| 177 |
+
self,
|
| 178 |
+
predict: torch.Tensor,
|
| 179 |
+
target: torch.Tensor,
|
| 180 |
+
weights,
|
| 181 |
+
**kwargs
|
| 182 |
+
) -> torch.Tensor:
|
| 183 |
+
return F.mse_loss(predict.float() * weights, target.float() * weights, reduction="mean")
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class IDLoss(Loss):
|
| 187 |
+
"""
|
| 188 |
+
Use pretrained facenet model to extract features from the face of the predicted image and target image.
|
| 189 |
+
Facenet expects 112x112 images, so we crop the face using MTCNN and resize it to 112x112.
|
| 190 |
+
Then we use the cosine similarity between the features to calculate the loss. (The cosine similarity is 1 - cosine distance).
|
| 191 |
+
Also notice that the outputs of facenet are normalized so the dot product is the same as cosine distance.
|
| 192 |
+
"""
|
| 193 |
+
def __init__(self, pretrained_arcface_path: str, skip_not_found=True, **kwargs):
|
| 194 |
+
super().__init__(**kwargs)
|
| 195 |
+
assert pretrained_arcface_path is not None, "please pass `pretrained_arcface_path` in the losses config. You can download the pretrained model from "\
|
| 196 |
+
"https://drive.google.com/file/d/1KW7bjndL3QG3sxBbZxreGHigcCCpsDgn/view?usp=sharing"
|
| 197 |
+
self.mtcnn = MTCNN(device=self.accelerator.device)
|
| 198 |
+
self.mtcnn.forward = self.mtcnn.detect
|
| 199 |
+
self.facenet_input_size = 112 # Has to be 112, can't find weights for 224 size.
|
| 200 |
+
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
|
| 201 |
+
self.facenet.load_state_dict(torch.load(pretrained_arcface_path))
|
| 202 |
+
self.face_pool = torch.nn.AdaptiveAvgPool2d((self.facenet_input_size, self.facenet_input_size))
|
| 203 |
+
self.facenet.requires_grad_(False)
|
| 204 |
+
self.facenet.eval()
|
| 205 |
+
self.facenet.to(device=self.accelerator.device, dtype=self.dtype) # not implemented for half precision
|
| 206 |
+
self.face_pool.to(device=self.accelerator.device, dtype=self.dtype) # not implemented for half precision
|
| 207 |
+
self.visualization_resize = transforms.Resize((self.facenet_input_size, self.facenet_input_size), interpolation=transforms.InterpolationMode.BICUBIC)
|
| 208 |
+
self.reference_facial_points = np.array([[38.29459953, 51.69630051],
|
| 209 |
+
[72.53179932, 51.50139999],
|
| 210 |
+
[56.02519989, 71.73660278],
|
| 211 |
+
[41.54930115, 92.3655014],
|
| 212 |
+
[70.72990036, 92.20410156]
|
| 213 |
+
]) # Original points are 112 * 96 added 8 to the x axis to make it 112 * 112
|
| 214 |
+
self.facenet, self.face_pool, self.mtcnn = self.accelerator.prepare(self.facenet, self.face_pool, self.mtcnn)
|
| 215 |
+
|
| 216 |
+
self.skip_not_found = skip_not_found
|
| 217 |
+
|
| 218 |
+
def extract_feats(self, x: torch.Tensor):
|
| 219 |
+
"""
|
| 220 |
+
Extract features from the face of the image using facenet model.
|
| 221 |
+
"""
|
| 222 |
+
x = self.face_pool(x)
|
| 223 |
+
x_feats = self.facenet(x)
|
| 224 |
+
|
| 225 |
+
return x_feats
|
| 226 |
+
|
| 227 |
+
def forward(
|
| 228 |
+
self,
|
| 229 |
+
predicted_pixel_values: torch.Tensor,
|
| 230 |
+
encoder_pixel_values: torch.Tensor,
|
| 231 |
+
timesteps: torch.Tensor,
|
| 232 |
+
**kwargs
|
| 233 |
+
):
|
| 234 |
+
encoder_pixel_values = encoder_pixel_values.to(dtype=self.dtype)
|
| 235 |
+
predicted_pixel_values = predicted_pixel_values.to(dtype=self.dtype)
|
| 236 |
+
|
| 237 |
+
predicted_pixel_values_face, predicted_invalid_indices = extract_faces_and_landmarks(predicted_pixel_values, mtcnn=self.mtcnn)
|
| 238 |
+
with torch.no_grad():
|
| 239 |
+
encoder_pixel_values_face, source_invalid_indices = extract_faces_and_landmarks(encoder_pixel_values, mtcnn=self.mtcnn)
|
| 240 |
+
|
| 241 |
+
if self.skip_not_found:
|
| 242 |
+
valid_indices = []
|
| 243 |
+
for i in range(predicted_pixel_values.shape[0]):
|
| 244 |
+
if i not in predicted_invalid_indices and i not in source_invalid_indices:
|
| 245 |
+
valid_indices.append(i)
|
| 246 |
+
else:
|
| 247 |
+
valid_indices = list(range(predicted_pixel_values))
|
| 248 |
+
|
| 249 |
+
valid_indices = torch.tensor(valid_indices).to(device=predicted_pixel_values.device)
|
| 250 |
+
|
| 251 |
+
if len(valid_indices) == 0:
|
| 252 |
+
loss = (predicted_pixel_values_face * 0.0).mean() # It's done this way so the `backwards` will delete the computation graph of the predicted_pixel_values.
|
| 253 |
+
if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
|
| 254 |
+
self.visualize(predicted_pixel_values, encoder_pixel_values, predicted_pixel_values_face, encoder_pixel_values_face, timesteps, valid_indices, loss)
|
| 255 |
+
return loss
|
| 256 |
+
|
| 257 |
+
with torch.no_grad():
|
| 258 |
+
pixel_values_feats = self.extract_feats(encoder_pixel_values_face[valid_indices])
|
| 259 |
+
|
| 260 |
+
predicted_pixel_values_feats = self.extract_feats(predicted_pixel_values_face[valid_indices])
|
| 261 |
+
loss = 1 - torch.einsum("bi,bi->b", pixel_values_feats, predicted_pixel_values_feats)
|
| 262 |
+
|
| 263 |
+
if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
|
| 264 |
+
self.visualize(predicted_pixel_values, encoder_pixel_values, predicted_pixel_values_face, encoder_pixel_values_face, timesteps, valid_indices, loss)
|
| 265 |
+
return loss.mean()
|
| 266 |
+
|
| 267 |
+
def visualize(
|
| 268 |
+
self,
|
| 269 |
+
predicted_pixel_values: torch.Tensor,
|
| 270 |
+
encoder_pixel_values: torch.Tensor,
|
| 271 |
+
predicted_pixel_values_face: torch.Tensor,
|
| 272 |
+
encoder_pixel_values_face: torch.Tensor,
|
| 273 |
+
timesteps: torch.Tensor,
|
| 274 |
+
valid_indices: torch.Tensor,
|
| 275 |
+
loss: torch.Tensor,
|
| 276 |
+
) -> None:
|
| 277 |
+
small_predicted_pixel_values = (rearrange(self.visualization_resize(predicted_pixel_values), "n c h w -> (n h) w c").detach().cpu().numpy())
|
| 278 |
+
small_pixle_values = rearrange(self.visualization_resize(encoder_pixel_values), "n c h w -> (n h) w c").detach().cpu().numpy()
|
| 279 |
+
small_predicted_pixel_values_face = rearrange(self.visualization_resize(predicted_pixel_values_face), "n c h w -> (n h) w c").detach().cpu().numpy()
|
| 280 |
+
small_pixle_values_face = rearrange(self.visualization_resize(encoder_pixel_values_face), "n c h w -> (n h) w c").detach().cpu().numpy()
|
| 281 |
+
|
| 282 |
+
small_predicted_pixel_values = add_text_to_image(((small_predicted_pixel_values * 0.5 + 0.5) * 255).astype(np.uint8), "Pred Images", add_below=False)
|
| 283 |
+
small_pixle_values = add_text_to_image(((small_pixle_values * 0.5 + 0.5) * 255).astype(np.uint8), "Target Images", add_below=False)
|
| 284 |
+
small_predicted_pixel_values_face = add_text_to_image(((small_predicted_pixel_values_face * 0.5 + 0.5) * 255).astype(np.uint8), "Pred Faces", add_below=False)
|
| 285 |
+
small_pixle_values_face = add_text_to_image(((small_pixle_values_face * 0.5 + 0.5) * 255).astype(np.uint8), "Target Faces", add_below=False)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
final_image = np.hstack([small_predicted_pixel_values, small_pixle_values, small_predicted_pixel_values_face, small_pixle_values_face])
|
| 289 |
+
for tracker in self.accelerator.trackers:
|
| 290 |
+
if tracker.name == 'wandb':
|
| 291 |
+
tracker.log({"IDLoss Visualization": wandb.Image(final_image, caption=f"loss: {loss.cpu().tolist()} timesteps: {timesteps.cpu().tolist()}, valid_indices: {valid_indices.cpu().tolist()}")})
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
class ImageAugmentations(torch.nn.Module):
|
| 295 |
+
# Standard image augmentations used for CLIP loss to discourage adversarial outputs.
|
| 296 |
+
def __init__(self, output_size, augmentations_number, p=0.7):
|
| 297 |
+
super().__init__()
|
| 298 |
+
self.output_size = output_size
|
| 299 |
+
self.augmentations_number = augmentations_number
|
| 300 |
+
|
| 301 |
+
self.augmentations = torch.nn.Sequential(
|
| 302 |
+
K.RandomAffine(degrees=15, translate=0.1, p=p, padding_mode="border"), # type: ignore
|
| 303 |
+
K.RandomPerspective(0.7, p=p),
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
self.avg_pool = torch.nn.AdaptiveAvgPool2d((self.output_size, self.output_size))
|
| 307 |
+
|
| 308 |
+
self.device = None
|
| 309 |
+
|
| 310 |
+
def forward(self, input):
|
| 311 |
+
"""Extents the input batch with augmentations
|
| 312 |
+
If the input is consists of images [I1, I2] the extended augmented output
|
| 313 |
+
will be [I1_resized, I2_resized, I1_aug1, I2_aug1, I1_aug2, I2_aug2 ...]
|
| 314 |
+
Args:
|
| 315 |
+
input ([type]): input batch of shape [batch, C, H, W]
|
| 316 |
+
Returns:
|
| 317 |
+
updated batch: of shape [batch * augmentations_number, C, H, W]
|
| 318 |
+
"""
|
| 319 |
+
# We want to multiply the number of images in the batch in contrast to regular augmantations
|
| 320 |
+
# that do not change the number of samples in the batch)
|
| 321 |
+
resized_images = self.avg_pool(input)
|
| 322 |
+
resized_images = torch.tile(resized_images, dims=(self.augmentations_number, 1, 1, 1))
|
| 323 |
+
|
| 324 |
+
batch_size = input.shape[0]
|
| 325 |
+
# We want at least one non augmented image
|
| 326 |
+
non_augmented_batch = resized_images[:batch_size]
|
| 327 |
+
augmented_batch = self.augmentations(resized_images[batch_size:])
|
| 328 |
+
updated_batch = torch.cat([non_augmented_batch, augmented_batch], dim=0)
|
| 329 |
+
|
| 330 |
+
return updated_batch
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class CLIPLoss(Loss):
|
| 334 |
+
def __init__(self, augmentations_number: int = 4, **kwargs):
|
| 335 |
+
super().__init__(**kwargs)
|
| 336 |
+
|
| 337 |
+
self.clip_model, clip_preprocess = clip.load("ViT-B/16", device=self.accelerator.device, jit=False)
|
| 338 |
+
|
| 339 |
+
self.clip_model.device = None
|
| 340 |
+
|
| 341 |
+
self.clip_model.eval().requires_grad_(False)
|
| 342 |
+
|
| 343 |
+
self.preprocess = transforms.Compose([transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (SD output) to [0, 1].
|
| 344 |
+
clip_preprocess.transforms[:2] + # to match CLIP input scale assumptions
|
| 345 |
+
clip_preprocess.transforms[4:]) # + skip convert PIL to tensor
|
| 346 |
+
|
| 347 |
+
self.clip_size = self.clip_model.visual.input_resolution
|
| 348 |
+
|
| 349 |
+
self.clip_normalize = transforms.Normalize(
|
| 350 |
+
mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
self.image_augmentations = ImageAugmentations(output_size=self.clip_size,
|
| 354 |
+
augmentations_number=augmentations_number)
|
| 355 |
+
|
| 356 |
+
self.clip_model, self.image_augmentations = self.accelerator.prepare(self.clip_model, self.image_augmentations)
|
| 357 |
+
|
| 358 |
+
def forward(self, decoder_prompts, predicted_pixel_values: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 359 |
+
|
| 360 |
+
if not isinstance(decoder_prompts, list):
|
| 361 |
+
decoder_prompts = [decoder_prompts]
|
| 362 |
+
|
| 363 |
+
tokens = clip.tokenize(decoder_prompts).to(predicted_pixel_values.device)
|
| 364 |
+
image = self.preprocess(predicted_pixel_values)
|
| 365 |
+
|
| 366 |
+
logits_per_image, _ = self.clip_model(image, tokens)
|
| 367 |
+
|
| 368 |
+
logits_per_image = torch.diagonal(logits_per_image)
|
| 369 |
+
|
| 370 |
+
return (1. - logits_per_image / 100).mean()
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
class DINOLoss(Loss):
|
| 374 |
+
def __init__(
|
| 375 |
+
self,
|
| 376 |
+
dino_model,
|
| 377 |
+
dino_preprocess,
|
| 378 |
+
output_hidden_states: bool = False,
|
| 379 |
+
center_momentum: float = 0.9,
|
| 380 |
+
student_temp: float = 0.1,
|
| 381 |
+
teacher_temp: float = 0.04,
|
| 382 |
+
warmup_teacher_temp: float = 0.04,
|
| 383 |
+
warmup_teacher_temp_epochs: int = 30,
|
| 384 |
+
**kwargs):
|
| 385 |
+
super().__init__(**kwargs)
|
| 386 |
+
|
| 387 |
+
self.dino_model = dino_model
|
| 388 |
+
self.output_hidden_states = output_hidden_states
|
| 389 |
+
self.rescale_factor = dino_preprocess.rescale_factor
|
| 390 |
+
|
| 391 |
+
# Un-normalize from [-1.0, 1.0] (SD output) to [0, 1].
|
| 392 |
+
self.preprocess = transforms.Compose(
|
| 393 |
+
[
|
| 394 |
+
transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0]),
|
| 395 |
+
transforms.Resize(size=256),
|
| 396 |
+
transforms.CenterCrop(size=(224, 224)),
|
| 397 |
+
transforms.Normalize(mean=dino_preprocess.image_mean, std=dino_preprocess.image_std)
|
| 398 |
+
]
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
self.student_temp = student_temp
|
| 402 |
+
self.teacher_temp = teacher_temp
|
| 403 |
+
self.center_momentum = center_momentum
|
| 404 |
+
self.center = torch.zeros(1, 257, 1024).to(self.accelerator.device, dtype=self.dtype)
|
| 405 |
+
|
| 406 |
+
# TODO: add temp, now fixed to 0.04
|
| 407 |
+
# we apply a warm up for the teacher temperature because
|
| 408 |
+
# a too high temperature makes the training instable at the beginning
|
| 409 |
+
# self.teacher_temp_schedule = np.concatenate((
|
| 410 |
+
# np.linspace(warmup_teacher_temp,
|
| 411 |
+
# teacher_temp, warmup_teacher_temp_epochs),
|
| 412 |
+
# np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
|
| 413 |
+
# ))
|
| 414 |
+
|
| 415 |
+
self.dino_model = self.accelerator.prepare(self.dino_model)
|
| 416 |
+
|
| 417 |
+
def forward(
|
| 418 |
+
self,
|
| 419 |
+
target: torch.Tensor,
|
| 420 |
+
predict: torch.Tensor,
|
| 421 |
+
weights: torch.Tensor = None,
|
| 422 |
+
**kwargs) -> torch.Tensor:
|
| 423 |
+
|
| 424 |
+
predict = self.preprocess(predict)
|
| 425 |
+
target = self.preprocess(target)
|
| 426 |
+
|
| 427 |
+
encoder_input = torch.cat([target, predict]).to(self.dino_model.device, dtype=self.dino_model.dtype)
|
| 428 |
+
|
| 429 |
+
if self.output_hidden_states:
|
| 430 |
+
raise ValueError("Output hidden states not supported for DINO loss.")
|
| 431 |
+
image_enc_hidden_states = self.dino_model(encoder_input, output_hidden_states=True).hidden_states[-2]
|
| 432 |
+
else:
|
| 433 |
+
image_enc_hidden_states = self.dino_model(encoder_input).last_hidden_state
|
| 434 |
+
|
| 435 |
+
teacher_output, student_output = image_enc_hidden_states.chunk(2, dim=0) # [B, 257, 1024]
|
| 436 |
+
|
| 437 |
+
student_out = student_output.float() / self.student_temp
|
| 438 |
+
|
| 439 |
+
# teacher centering and sharpening
|
| 440 |
+
# temp = self.teacher_temp_schedule[epoch]
|
| 441 |
+
temp = self.teacher_temp
|
| 442 |
+
teacher_out = F.softmax((teacher_output.float() - self.center) / temp, dim=-1)
|
| 443 |
+
teacher_out = teacher_out.detach()
|
| 444 |
+
|
| 445 |
+
loss = torch.sum(-teacher_out * F.log_softmax(student_out, dim=-1), dim=-1, keepdim=True)
|
| 446 |
+
# self.update_center(teacher_output)
|
| 447 |
+
|
| 448 |
+
if weights is not None:
|
| 449 |
+
loss = loss * weights
|
| 450 |
+
return loss.mean()
|
| 451 |
+
return loss.mean()
|
| 452 |
+
|
| 453 |
+
@torch.no_grad()
|
| 454 |
+
def update_center(self, teacher_output):
|
| 455 |
+
"""
|
| 456 |
+
Update center used for teacher output.
|
| 457 |
+
"""
|
| 458 |
+
batch_center = torch.sum(teacher_output, dim=0, keepdim=True)
|
| 459 |
+
self.accelerator.reduce(batch_center, reduction="sum")
|
| 460 |
+
batch_center = batch_center / (len(teacher_output) * self.accelerator.num_processes)
|
| 461 |
+
|
| 462 |
+
# ema update
|
| 463 |
+
self.center = self.center * self.center_momentum + batch_center * (1 - self.center_momentum)
|