Spaces:
				
			
			
	
			
			
		Configuration error
		
	
	
	
			
			
	
	
	
	
		
		
		Configuration error
		
	Create losses.py
Browse files- losses/losses.py +463 -0
    	
        losses/losses.py
    ADDED
    
    | @@ -0,0 +1,463 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import wandb
         | 
| 3 | 
            +
            import cv2
         | 
| 4 | 
            +
            import torch.nn.functional as F
         | 
| 5 | 
            +
            import numpy as np
         | 
| 6 | 
            +
            from facenet_pytorch import MTCNN
         | 
| 7 | 
            +
            from torchvision import transforms
         | 
| 8 | 
            +
            from dreamsim import dreamsim
         | 
| 9 | 
            +
            from einops import rearrange
         | 
| 10 | 
            +
            import kornia.augmentation as K
         | 
| 11 | 
            +
            import lpips
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from pretrained_models.arcface import Backbone
         | 
| 14 | 
            +
            from utils.vis_utils import add_text_to_image
         | 
| 15 | 
            +
            from utils.utils import extract_faces_and_landmarks
         | 
| 16 | 
            +
            import clip
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            class Loss():
         | 
| 20 | 
            +
                """
         | 
| 21 | 
            +
                General purpose loss class. 
         | 
| 22 | 
            +
                Mainly handles dtype and visualize_every_k.
         | 
| 23 | 
            +
                keeps current iteration of loss, mainly for visualization purposes.
         | 
| 24 | 
            +
                """
         | 
| 25 | 
            +
                def __init__(self, visualize_every_k=-1, dtype=torch.float32, accelerator=None, **kwargs):
         | 
| 26 | 
            +
                    self.visualize_every_k = visualize_every_k
         | 
| 27 | 
            +
                    self.iteration = -1
         | 
| 28 | 
            +
                    self.dtype=dtype
         | 
| 29 | 
            +
                    self.accelerator = accelerator
         | 
| 30 | 
            +
                    
         | 
| 31 | 
            +
                def __call__(self, **kwargs):
         | 
| 32 | 
            +
                    self.iteration += 1
         | 
| 33 | 
            +
                    return self.forward(**kwargs)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            class L1Loss(Loss):
         | 
| 37 | 
            +
                """
         | 
| 38 | 
            +
                Simple L1 loss between predicted_pixel_values and pixel_values
         | 
| 39 | 
            +
                
         | 
| 40 | 
            +
                Args:
         | 
| 41 | 
            +
                    predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
         | 
| 42 | 
            +
                    encoder_pixel_values (torch.Tesnor): The input image to the encoder
         | 
| 43 | 
            +
                """
         | 
| 44 | 
            +
                def forward(
         | 
| 45 | 
            +
                    self, 
         | 
| 46 | 
            +
                    predict: torch.Tensor,
         | 
| 47 | 
            +
                    target: torch.Tensor,
         | 
| 48 | 
            +
                    **kwargs
         | 
| 49 | 
            +
                ) -> torch.Tensor:
         | 
| 50 | 
            +
                    return F.l1_loss(predict, target, reduction="mean")
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            class DreamSIMLoss(Loss):
         | 
| 54 | 
            +
                """DreamSIM loss between predicted_pixel_values and pixel_values.
         | 
| 55 | 
            +
                DreamSIM is similar to LPIPS (https://dreamsim-nights.github.io/) but is trained on more human defined similarity dataset
         | 
| 56 | 
            +
                DreamSIM expects an RGB image of size 224x224 and values between 0 and 1. So we need to normalize the input images to 0-1 range and resize them to 224x224.
         | 
| 57 | 
            +
                Args:
         | 
| 58 | 
            +
                    predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
         | 
| 59 | 
            +
                    encoder_pixel_values (torch.Tesnor): The input image to the encoder
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
                def __init__(self, device: str='cuda:0', **kwargs):
         | 
| 62 | 
            +
                    super().__init__(**kwargs)
         | 
| 63 | 
            +
                    self.model, _ = dreamsim(pretrained=True, device=device)
         | 
| 64 | 
            +
                    self.model.to(dtype=self.dtype, device=device)
         | 
| 65 | 
            +
                    self.model = self.accelerator.prepare(self.model)
         | 
| 66 | 
            +
                    self.transforms = transforms.Compose([
         | 
| 67 | 
            +
                        transforms.Lambda(lambda x: (x + 1) / 2),
         | 
| 68 | 
            +
                        transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC)])
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                def forward(
         | 
| 71 | 
            +
                    self,
         | 
| 72 | 
            +
                    predicted_pixel_values: torch.Tensor,
         | 
| 73 | 
            +
                    encoder_pixel_values: torch.Tensor,
         | 
| 74 | 
            +
                    **kwargs,
         | 
| 75 | 
            +
                ) -> torch.Tensor:
         | 
| 76 | 
            +
                    predicted_pixel_values.to(dtype=self.dtype)
         | 
| 77 | 
            +
                    encoder_pixel_values.to(dtype=self.dtype)
         | 
| 78 | 
            +
                    return self.model(self.transforms(predicted_pixel_values), self.transforms(encoder_pixel_values)).mean()
         | 
| 79 | 
            +
             | 
| 80 | 
            +
             | 
| 81 | 
            +
            class LPIPSLoss(Loss):
         | 
| 82 | 
            +
                """LPIPS loss between predicted_pixel_values and pixel_values.
         | 
| 83 | 
            +
                Args:
         | 
| 84 | 
            +
                    predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
         | 
| 85 | 
            +
                    encoder_pixel_values (torch.Tesnor): The input image to the encoder
         | 
| 86 | 
            +
                """
         | 
| 87 | 
            +
                def __init__(self,  **kwargs):
         | 
| 88 | 
            +
                    super().__init__(**kwargs)
         | 
| 89 | 
            +
                    self.model = lpips.LPIPS(net='vgg')
         | 
| 90 | 
            +
                    self.model.to(dtype=self.dtype, device=self.accelerator.device)
         | 
| 91 | 
            +
                    self.model = self.accelerator.prepare(self.model)
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                def forward(self, predict, target, **kwargs):
         | 
| 94 | 
            +
                    predict.to(dtype=self.dtype)
         | 
| 95 | 
            +
                    target.to(dtype=self.dtype)
         | 
| 96 | 
            +
                    return self.model(predict, target).mean()
         | 
| 97 | 
            +
             | 
| 98 | 
            +
             | 
| 99 | 
            +
            class LCMVisualization(Loss):
         | 
| 100 | 
            +
                """Dummy loss used to visualize the LCM outputs
         | 
| 101 | 
            +
                Args:
         | 
| 102 | 
            +
                    predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
         | 
| 103 | 
            +
                    pixel_values (torch.Tensor): The input image to the decoder
         | 
| 104 | 
            +
                    encoder_pixel_values (torch.Tesnor): The input image to the encoder
         | 
| 105 | 
            +
                """
         | 
| 106 | 
            +
                def forward(
         | 
| 107 | 
            +
                    self, 
         | 
| 108 | 
            +
                    predicted_pixel_values: torch.Tensor,
         | 
| 109 | 
            +
                    pixel_values: torch.Tensor,
         | 
| 110 | 
            +
                    encoder_pixel_values: torch.Tensor,
         | 
| 111 | 
            +
                    timesteps: torch.Tensor,
         | 
| 112 | 
            +
                    **kwargs,
         | 
| 113 | 
            +
                ) -> None:
         | 
| 114 | 
            +
                    if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
         | 
| 115 | 
            +
                        predicted_pixel_values = rearrange(predicted_pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
         | 
| 116 | 
            +
                        pixel_values = rearrange(pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
         | 
| 117 | 
            +
                        encoder_pixel_values = rearrange(encoder_pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
         | 
| 118 | 
            +
                        image = np.hstack([encoder_pixel_values, pixel_values, predicted_pixel_values])
         | 
| 119 | 
            +
                        for tracker in self.accelerator.trackers:
         | 
| 120 | 
            +
                            if tracker.name == 'wandb':
         | 
| 121 | 
            +
                                tracker.log({"TrainVisualization": wandb.Image(image, caption=f"Encoder Input Image, Decoder Input Image, Predicted LCM Image. Timesteps {timesteps.cpu().tolist()}")})
         | 
| 122 | 
            +
                    return torch.tensor(0.0)
         | 
| 123 | 
            +
             | 
| 124 | 
            +
             | 
| 125 | 
            +
            class L2Loss(Loss):
         | 
| 126 | 
            +
                """
         | 
| 127 | 
            +
                Regular diffusion loss between predicted noise and target noise.
         | 
| 128 | 
            +
                Args:
         | 
| 129 | 
            +
                    predicted_noise (torch.Tensor): noise predicted by the diffusion model
         | 
| 130 | 
            +
                    target_noise (torch.Tensor): actual noise added to the image.
         | 
| 131 | 
            +
                """
         | 
| 132 | 
            +
                def forward(
         | 
| 133 | 
            +
                    self,
         | 
| 134 | 
            +
                    predict: torch.Tensor,
         | 
| 135 | 
            +
                    target: torch.Tensor,
         | 
| 136 | 
            +
                    weights: torch.Tensor = None,
         | 
| 137 | 
            +
                    **kwargs
         | 
| 138 | 
            +
                ) -> torch.Tensor:
         | 
| 139 | 
            +
                    if weights is not None:
         | 
| 140 | 
            +
                        loss = (predict.float() - target.float()).pow(2) * weights
         | 
| 141 | 
            +
                        return loss.mean()
         | 
| 142 | 
            +
                    return F.mse_loss(predict.float(), target.float(), reduction="mean")
         | 
| 143 | 
            +
             | 
| 144 | 
            +
             | 
| 145 | 
            +
            class HuberLoss(Loss):
         | 
| 146 | 
            +
                """Huber loss between predicted_pixel_values and pixel_values.
         | 
| 147 | 
            +
                Args:
         | 
| 148 | 
            +
                    predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
         | 
| 149 | 
            +
                    encoder_pixel_values (torch.Tesnor): The input image to the encoder
         | 
| 150 | 
            +
                """
         | 
| 151 | 
            +
                def __init__(self, huber_c=0.001, **kwargs):
         | 
| 152 | 
            +
                    super().__init__(**kwargs)
         | 
| 153 | 
            +
                    self.huber_c = huber_c
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                def forward(
         | 
| 156 | 
            +
                    self,
         | 
| 157 | 
            +
                    predict: torch.Tensor,
         | 
| 158 | 
            +
                    target: torch.Tensor,
         | 
| 159 | 
            +
                    weights: torch.Tensor = None,
         | 
| 160 | 
            +
                    **kwargs
         | 
| 161 | 
            +
                ) -> torch.Tensor:
         | 
| 162 | 
            +
                    loss = torch.sqrt((predict.float() - target.float()) ** 2 + self.huber_c**2) - self.huber_c
         | 
| 163 | 
            +
                    if weights is not None:
         | 
| 164 | 
            +
                        return (loss * weights).mean()
         | 
| 165 | 
            +
                    return loss.mean()
         | 
| 166 | 
            +
             | 
| 167 | 
            +
             | 
| 168 | 
            +
            class WeightedNoiseLoss(Loss):
         | 
| 169 | 
            +
                """
         | 
| 170 | 
            +
                Weighted diffusion loss between predicted noise and target noise.
         | 
| 171 | 
            +
                Args:
         | 
| 172 | 
            +
                    predicted_noise (torch.Tensor): noise predicted by the diffusion model
         | 
| 173 | 
            +
                    target_noise (torch.Tensor): actual noise added to the image.
         | 
| 174 | 
            +
                    loss_batch_weights (torch.Tensor): weighting for each batch item. Can be used to e.g. zero-out loss for InstantID training if keypoint extraction fails.
         | 
| 175 | 
            +
                """
         | 
| 176 | 
            +
                def forward(
         | 
| 177 | 
            +
                    self,
         | 
| 178 | 
            +
                    predict: torch.Tensor,
         | 
| 179 | 
            +
                    target: torch.Tensor,
         | 
| 180 | 
            +
                    weights,
         | 
| 181 | 
            +
                    **kwargs
         | 
| 182 | 
            +
                ) -> torch.Tensor:
         | 
| 183 | 
            +
                    return F.mse_loss(predict.float() * weights, target.float() * weights, reduction="mean")
         | 
| 184 | 
            +
             | 
| 185 | 
            +
             | 
| 186 | 
            +
            class IDLoss(Loss):
         | 
| 187 | 
            +
                """
         | 
| 188 | 
            +
                Use pretrained facenet model to extract features from the face of the predicted image and target image.
         | 
| 189 | 
            +
                Facenet expects 112x112 images, so we crop the face using MTCNN and resize it to 112x112.
         | 
| 190 | 
            +
                Then we use the cosine similarity between the features to calculate the loss. (The cosine similarity is 1 - cosine distance).
         | 
| 191 | 
            +
                Also notice that the outputs of facenet are normalized so the dot product is the same as cosine distance.
         | 
| 192 | 
            +
                """
         | 
| 193 | 
            +
                def __init__(self, pretrained_arcface_path: str, skip_not_found=True, **kwargs):
         | 
| 194 | 
            +
                    super().__init__(**kwargs)
         | 
| 195 | 
            +
                    assert pretrained_arcface_path is not None, "please pass `pretrained_arcface_path` in the losses config. You can download the pretrained model from "\
         | 
| 196 | 
            +
                        "https://drive.google.com/file/d/1KW7bjndL3QG3sxBbZxreGHigcCCpsDgn/view?usp=sharing"
         | 
| 197 | 
            +
                    self.mtcnn = MTCNN(device=self.accelerator.device)
         | 
| 198 | 
            +
                    self.mtcnn.forward = self.mtcnn.detect
         | 
| 199 | 
            +
                    self.facenet_input_size = 112  # Has to be 112, can't find weights for 224 size.
         | 
| 200 | 
            +
                    self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
         | 
| 201 | 
            +
                    self.facenet.load_state_dict(torch.load(pretrained_arcface_path))
         | 
| 202 | 
            +
                    self.face_pool = torch.nn.AdaptiveAvgPool2d((self.facenet_input_size, self.facenet_input_size))
         | 
| 203 | 
            +
                    self.facenet.requires_grad_(False)
         | 
| 204 | 
            +
                    self.facenet.eval()
         | 
| 205 | 
            +
                    self.facenet.to(device=self.accelerator.device, dtype=self.dtype)  # not implemented for half precision
         | 
| 206 | 
            +
                    self.face_pool.to(device=self.accelerator.device, dtype=self.dtype)  # not implemented for half precision
         | 
| 207 | 
            +
                    self.visualization_resize = transforms.Resize((self.facenet_input_size, self.facenet_input_size), interpolation=transforms.InterpolationMode.BICUBIC)
         | 
| 208 | 
            +
                    self.reference_facial_points = np.array([[38.29459953, 51.69630051],
         | 
| 209 | 
            +
                                                             [72.53179932, 51.50139999],
         | 
| 210 | 
            +
                                                             [56.02519989, 71.73660278],
         | 
| 211 | 
            +
                                                             [41.54930115, 92.3655014],
         | 
| 212 | 
            +
                                                             [70.72990036, 92.20410156]
         | 
| 213 | 
            +
                                                             ])  # Original points are 112 * 96 added 8 to the x axis to make it 112 * 112
         | 
| 214 | 
            +
                    self.facenet, self.face_pool, self.mtcnn = self.accelerator.prepare(self.facenet, self.face_pool, self.mtcnn)
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    self.skip_not_found = skip_not_found
         | 
| 217 | 
            +
                
         | 
| 218 | 
            +
                def extract_feats(self, x: torch.Tensor):
         | 
| 219 | 
            +
                    """
         | 
| 220 | 
            +
                    Extract features from the face of the image using facenet model.
         | 
| 221 | 
            +
                    """
         | 
| 222 | 
            +
                    x = self.face_pool(x)
         | 
| 223 | 
            +
                    x_feats = self.facenet(x)
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                    return x_feats
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                def forward(
         | 
| 228 | 
            +
                    self, 
         | 
| 229 | 
            +
                    predicted_pixel_values: torch.Tensor,
         | 
| 230 | 
            +
                    encoder_pixel_values: torch.Tensor,
         | 
| 231 | 
            +
                    timesteps: torch.Tensor,
         | 
| 232 | 
            +
                    **kwargs
         | 
| 233 | 
            +
                ):
         | 
| 234 | 
            +
                    encoder_pixel_values = encoder_pixel_values.to(dtype=self.dtype)
         | 
| 235 | 
            +
                    predicted_pixel_values = predicted_pixel_values.to(dtype=self.dtype)
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                    predicted_pixel_values_face, predicted_invalid_indices = extract_faces_and_landmarks(predicted_pixel_values, mtcnn=self.mtcnn)
         | 
| 238 | 
            +
                    with torch.no_grad():
         | 
| 239 | 
            +
                        encoder_pixel_values_face, source_invalid_indices = extract_faces_and_landmarks(encoder_pixel_values, mtcnn=self.mtcnn)
         | 
| 240 | 
            +
                    
         | 
| 241 | 
            +
                    if self.skip_not_found:
         | 
| 242 | 
            +
                        valid_indices = []
         | 
| 243 | 
            +
                        for i in range(predicted_pixel_values.shape[0]):
         | 
| 244 | 
            +
                            if i not in predicted_invalid_indices and i not in source_invalid_indices:
         | 
| 245 | 
            +
                                valid_indices.append(i)
         | 
| 246 | 
            +
                    else:
         | 
| 247 | 
            +
                        valid_indices = list(range(predicted_pixel_values))
         | 
| 248 | 
            +
                        
         | 
| 249 | 
            +
                    valid_indices = torch.tensor(valid_indices).to(device=predicted_pixel_values.device)
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    if len(valid_indices) == 0:
         | 
| 252 | 
            +
                        loss =  (predicted_pixel_values_face * 0.0).mean()  # It's done this way so the `backwards` will delete the computation graph of the predicted_pixel_values.
         | 
| 253 | 
            +
                        if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
         | 
| 254 | 
            +
                            self.visualize(predicted_pixel_values, encoder_pixel_values, predicted_pixel_values_face, encoder_pixel_values_face, timesteps, valid_indices, loss)
         | 
| 255 | 
            +
                        return loss
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    with torch.no_grad():
         | 
| 258 | 
            +
                        pixel_values_feats = self.extract_feats(encoder_pixel_values_face[valid_indices])
         | 
| 259 | 
            +
                        
         | 
| 260 | 
            +
                    predicted_pixel_values_feats = self.extract_feats(predicted_pixel_values_face[valid_indices])
         | 
| 261 | 
            +
                    loss = 1 - torch.einsum("bi,bi->b", pixel_values_feats, predicted_pixel_values_feats)
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                    if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
         | 
| 264 | 
            +
                        self.visualize(predicted_pixel_values, encoder_pixel_values, predicted_pixel_values_face, encoder_pixel_values_face, timesteps, valid_indices, loss)
         | 
| 265 | 
            +
                    return loss.mean()
         | 
| 266 | 
            +
                
         | 
| 267 | 
            +
                def visualize(
         | 
| 268 | 
            +
                    self,
         | 
| 269 | 
            +
                    predicted_pixel_values: torch.Tensor,
         | 
| 270 | 
            +
                    encoder_pixel_values: torch.Tensor,
         | 
| 271 | 
            +
                    predicted_pixel_values_face: torch.Tensor,
         | 
| 272 | 
            +
                    encoder_pixel_values_face: torch.Tensor,
         | 
| 273 | 
            +
                    timesteps: torch.Tensor,
         | 
| 274 | 
            +
                    valid_indices: torch.Tensor,
         | 
| 275 | 
            +
                    loss: torch.Tensor,
         | 
| 276 | 
            +
                ) -> None:
         | 
| 277 | 
            +
                    small_predicted_pixel_values = (rearrange(self.visualization_resize(predicted_pixel_values), "n c h w -> (n h) w c").detach().cpu().numpy())
         | 
| 278 | 
            +
                    small_pixle_values = rearrange(self.visualization_resize(encoder_pixel_values), "n c h w -> (n h) w c").detach().cpu().numpy() 
         | 
| 279 | 
            +
                    small_predicted_pixel_values_face = rearrange(self.visualization_resize(predicted_pixel_values_face), "n c h w -> (n h) w c").detach().cpu().numpy()
         | 
| 280 | 
            +
                    small_pixle_values_face = rearrange(self.visualization_resize(encoder_pixel_values_face), "n c h w -> (n h) w c").detach().cpu().numpy()
         | 
| 281 | 
            +
                    
         | 
| 282 | 
            +
                    small_predicted_pixel_values = add_text_to_image(((small_predicted_pixel_values * 0.5 + 0.5) * 255).astype(np.uint8), "Pred Images", add_below=False)
         | 
| 283 | 
            +
                    small_pixle_values = add_text_to_image(((small_pixle_values * 0.5 + 0.5) * 255).astype(np.uint8), "Target Images", add_below=False)
         | 
| 284 | 
            +
                    small_predicted_pixel_values_face = add_text_to_image(((small_predicted_pixel_values_face * 0.5 + 0.5) * 255).astype(np.uint8), "Pred Faces", add_below=False)
         | 
| 285 | 
            +
                    small_pixle_values_face = add_text_to_image(((small_pixle_values_face * 0.5 + 0.5) * 255).astype(np.uint8), "Target Faces", add_below=False)
         | 
| 286 | 
            +
             | 
| 287 | 
            +
             | 
| 288 | 
            +
                    final_image = np.hstack([small_predicted_pixel_values, small_pixle_values, small_predicted_pixel_values_face, small_pixle_values_face])
         | 
| 289 | 
            +
                    for tracker in self.accelerator.trackers:
         | 
| 290 | 
            +
                        if tracker.name == 'wandb':
         | 
| 291 | 
            +
                            tracker.log({"IDLoss Visualization": wandb.Image(final_image, caption=f"loss: {loss.cpu().tolist()} timesteps: {timesteps.cpu().tolist()}, valid_indices: {valid_indices.cpu().tolist()}")})
         | 
| 292 | 
            +
             | 
| 293 | 
            +
             | 
| 294 | 
            +
            class ImageAugmentations(torch.nn.Module):
         | 
| 295 | 
            +
                # Standard image augmentations used for CLIP loss to discourage adversarial outputs.
         | 
| 296 | 
            +
                def __init__(self, output_size, augmentations_number, p=0.7):
         | 
| 297 | 
            +
                    super().__init__()
         | 
| 298 | 
            +
                    self.output_size = output_size
         | 
| 299 | 
            +
                    self.augmentations_number = augmentations_number
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    self.augmentations = torch.nn.Sequential(
         | 
| 302 | 
            +
                        K.RandomAffine(degrees=15, translate=0.1, p=p, padding_mode="border"),  # type: ignore
         | 
| 303 | 
            +
                        K.RandomPerspective(0.7, p=p),
         | 
| 304 | 
            +
                    )
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    self.avg_pool = torch.nn.AdaptiveAvgPool2d((self.output_size, self.output_size))
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    self.device = None
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                def forward(self, input):
         | 
| 311 | 
            +
                    """Extents the input batch with augmentations
         | 
| 312 | 
            +
                    If the input is consists of images [I1, I2] the extended augmented output
         | 
| 313 | 
            +
                    will be [I1_resized, I2_resized, I1_aug1, I2_aug1, I1_aug2, I2_aug2 ...]
         | 
| 314 | 
            +
                    Args:
         | 
| 315 | 
            +
                        input ([type]): input batch of shape [batch, C, H, W]
         | 
| 316 | 
            +
                    Returns:
         | 
| 317 | 
            +
                        updated batch: of shape [batch * augmentations_number, C, H, W]
         | 
| 318 | 
            +
                    """
         | 
| 319 | 
            +
                    # We want to multiply the number of images in the batch in contrast to regular augmantations
         | 
| 320 | 
            +
                    # that do not change the number of samples in the batch)
         | 
| 321 | 
            +
                    resized_images = self.avg_pool(input)
         | 
| 322 | 
            +
                    resized_images = torch.tile(resized_images, dims=(self.augmentations_number, 1, 1, 1))
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    batch_size = input.shape[0]
         | 
| 325 | 
            +
                    # We want at least one non augmented image
         | 
| 326 | 
            +
                    non_augmented_batch = resized_images[:batch_size]
         | 
| 327 | 
            +
                    augmented_batch = self.augmentations(resized_images[batch_size:])
         | 
| 328 | 
            +
                    updated_batch = torch.cat([non_augmented_batch, augmented_batch], dim=0)
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                    return updated_batch
         | 
| 331 | 
            +
             | 
| 332 | 
            +
             | 
| 333 | 
            +
            class CLIPLoss(Loss):
         | 
| 334 | 
            +
                def __init__(self, augmentations_number: int = 4, **kwargs):
         | 
| 335 | 
            +
                    super().__init__(**kwargs)
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                    self.clip_model, clip_preprocess = clip.load("ViT-B/16", device=self.accelerator.device, jit=False)
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                    self.clip_model.device = None
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    self.clip_model.eval().requires_grad_(False)
         | 
| 342 | 
            +
                    
         | 
| 343 | 
            +
                    self.preprocess = transforms.Compose([transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (SD output) to [0, 1].
         | 
| 344 | 
            +
                                                          clip_preprocess.transforms[:2] +                                      # to match CLIP input scale assumptions
         | 
| 345 | 
            +
                                                          clip_preprocess.transforms[4:])                                       # + skip convert PIL to tensor
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                    self.clip_size = self.clip_model.visual.input_resolution
         | 
| 348 | 
            +
             | 
| 349 | 
            +
                    self.clip_normalize = transforms.Normalize(
         | 
| 350 | 
            +
                        mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]
         | 
| 351 | 
            +
                    )
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                    self.image_augmentations = ImageAugmentations(output_size=self.clip_size,
         | 
| 354 | 
            +
                                                                  augmentations_number=augmentations_number)
         | 
| 355 | 
            +
                    
         | 
| 356 | 
            +
                    self.clip_model, self.image_augmentations = self.accelerator.prepare(self.clip_model, self.image_augmentations)
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                def forward(self, decoder_prompts, predicted_pixel_values: torch.Tensor, **kwargs) -> torch.Tensor:
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                    if not isinstance(decoder_prompts, list):
         | 
| 361 | 
            +
                        decoder_prompts = [decoder_prompts]
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    tokens = clip.tokenize(decoder_prompts).to(predicted_pixel_values.device)
         | 
| 364 | 
            +
                    image  = self.preprocess(predicted_pixel_values)
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                    logits_per_image, _ = self.clip_model(image, tokens)
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                    logits_per_image = torch.diagonal(logits_per_image)
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                    return (1. - logits_per_image / 100).mean()
         | 
| 371 | 
            +
             | 
| 372 | 
            +
             | 
| 373 | 
            +
            class DINOLoss(Loss):
         | 
| 374 | 
            +
                def __init__(
         | 
| 375 | 
            +
                        self,
         | 
| 376 | 
            +
                        dino_model,
         | 
| 377 | 
            +
                        dino_preprocess,
         | 
| 378 | 
            +
                        output_hidden_states: bool = False,
         | 
| 379 | 
            +
                        center_momentum: float = 0.9,
         | 
| 380 | 
            +
                        student_temp: float = 0.1,
         | 
| 381 | 
            +
                        teacher_temp: float = 0.04,
         | 
| 382 | 
            +
                        warmup_teacher_temp: float = 0.04,
         | 
| 383 | 
            +
                        warmup_teacher_temp_epochs: int = 30,
         | 
| 384 | 
            +
                        **kwargs):
         | 
| 385 | 
            +
                    super().__init__(**kwargs)
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                    self.dino_model = dino_model
         | 
| 388 | 
            +
                    self.output_hidden_states = output_hidden_states
         | 
| 389 | 
            +
                    self.rescale_factor = dino_preprocess.rescale_factor
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    # Un-normalize from [-1.0, 1.0] (SD output) to [0, 1].
         | 
| 392 | 
            +
                    self.preprocess = transforms.Compose(
         | 
| 393 | 
            +
                        [
         | 
| 394 | 
            +
                            transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0]),
         | 
| 395 | 
            +
                            transforms.Resize(size=256),
         | 
| 396 | 
            +
                            transforms.CenterCrop(size=(224, 224)),
         | 
| 397 | 
            +
                            transforms.Normalize(mean=dino_preprocess.image_mean, std=dino_preprocess.image_std)
         | 
| 398 | 
            +
                        ]
         | 
| 399 | 
            +
                    )
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                    self.student_temp = student_temp
         | 
| 402 | 
            +
                    self.teacher_temp = teacher_temp
         | 
| 403 | 
            +
                    self.center_momentum = center_momentum
         | 
| 404 | 
            +
                    self.center = torch.zeros(1, 257, 1024).to(self.accelerator.device, dtype=self.dtype)
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                    # TODO: add temp, now fixed to 0.04
         | 
| 407 | 
            +
                    # we apply a warm up for the teacher temperature because
         | 
| 408 | 
            +
                    # a too high temperature makes the training instable at the beginning
         | 
| 409 | 
            +
                    # self.teacher_temp_schedule = np.concatenate((
         | 
| 410 | 
            +
                    #     np.linspace(warmup_teacher_temp,
         | 
| 411 | 
            +
                    #                 teacher_temp, warmup_teacher_temp_epochs),
         | 
| 412 | 
            +
                    #     np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
         | 
| 413 | 
            +
                    # ))
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                    self.dino_model = self.accelerator.prepare(self.dino_model)
         | 
| 416 | 
            +
             | 
| 417 | 
            +
                def forward(
         | 
| 418 | 
            +
                        self,
         | 
| 419 | 
            +
                        target: torch.Tensor,
         | 
| 420 | 
            +
                        predict: torch.Tensor,
         | 
| 421 | 
            +
                        weights: torch.Tensor = None,
         | 
| 422 | 
            +
                        **kwargs) -> torch.Tensor:
         | 
| 423 | 
            +
             | 
| 424 | 
            +
                    predict = self.preprocess(predict)
         | 
| 425 | 
            +
                    target = self.preprocess(target)
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                    encoder_input = torch.cat([target, predict]).to(self.dino_model.device, dtype=self.dino_model.dtype)
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                    if self.output_hidden_states:
         | 
| 430 | 
            +
                        raise ValueError("Output hidden states not supported for DINO loss.")
         | 
| 431 | 
            +
                        image_enc_hidden_states = self.dino_model(encoder_input, output_hidden_states=True).hidden_states[-2]
         | 
| 432 | 
            +
                    else:
         | 
| 433 | 
            +
                        image_enc_hidden_states = self.dino_model(encoder_input).last_hidden_state
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                    teacher_output, student_output = image_enc_hidden_states.chunk(2, dim=0)         # [B, 257, 1024]
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                    student_out = student_output.float() / self.student_temp
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                    # teacher centering and sharpening
         | 
| 440 | 
            +
                    # temp = self.teacher_temp_schedule[epoch]
         | 
| 441 | 
            +
                    temp = self.teacher_temp
         | 
| 442 | 
            +
                    teacher_out = F.softmax((teacher_output.float() - self.center) / temp, dim=-1)
         | 
| 443 | 
            +
                    teacher_out = teacher_out.detach()
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    loss = torch.sum(-teacher_out * F.log_softmax(student_out, dim=-1), dim=-1, keepdim=True)
         | 
| 446 | 
            +
                    # self.update_center(teacher_output)
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                    if weights is not None:
         | 
| 449 | 
            +
                        loss = loss * weights
         | 
| 450 | 
            +
                        return loss.mean()
         | 
| 451 | 
            +
                    return loss.mean()
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                @torch.no_grad()
         | 
| 454 | 
            +
                def update_center(self, teacher_output):
         | 
| 455 | 
            +
                    """
         | 
| 456 | 
            +
                    Update center used for teacher output.
         | 
| 457 | 
            +
                    """
         | 
| 458 | 
            +
                    batch_center = torch.sum(teacher_output, dim=0, keepdim=True)
         | 
| 459 | 
            +
                    self.accelerator.reduce(batch_center, reduction="sum")
         | 
| 460 | 
            +
                    batch_center = batch_center / (len(teacher_output) * self.accelerator.num_processes)
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                    # ema update
         | 
| 463 | 
            +
                    self.center = self.center * self.center_momentum + batch_center * (1 - self.center_momentum)
         |