Spaces:
Build error
Build error
Create resampler.py
Browse files- module/ip_adapter/resampler.py +159 -0
module/ip_adapter/resampler.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
| 2 |
+
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from einops.layers.torch import Rearrange
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# FFN
|
| 13 |
+
def FeedForward(dim, mult=4):
|
| 14 |
+
inner_dim = int(dim * mult)
|
| 15 |
+
return nn.Sequential(
|
| 16 |
+
nn.LayerNorm(dim),
|
| 17 |
+
nn.Linear(dim, inner_dim, bias=False),
|
| 18 |
+
nn.GELU(),
|
| 19 |
+
nn.Linear(inner_dim, dim, bias=False),
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def reshape_tensor(x, heads):
|
| 24 |
+
bs, length, width = x.shape
|
| 25 |
+
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
| 26 |
+
x = x.view(bs, length, heads, -1)
|
| 27 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
| 28 |
+
x = x.transpose(1, 2)
|
| 29 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
| 30 |
+
x = x.reshape(bs, heads, length, -1)
|
| 31 |
+
return x
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class PerceiverAttention(nn.Module):
|
| 35 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.scale = dim_head**-0.5
|
| 38 |
+
self.dim_head = dim_head
|
| 39 |
+
self.heads = heads
|
| 40 |
+
inner_dim = dim_head * heads
|
| 41 |
+
|
| 42 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 43 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 44 |
+
|
| 45 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 46 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
| 47 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
| 48 |
+
|
| 49 |
+
def forward(self, x, latents):
|
| 50 |
+
"""
|
| 51 |
+
Args:
|
| 52 |
+
x (torch.Tensor): image features
|
| 53 |
+
shape (b, n1, D)
|
| 54 |
+
latent (torch.Tensor): latent features
|
| 55 |
+
shape (b, n2, D)
|
| 56 |
+
"""
|
| 57 |
+
x = self.norm1(x)
|
| 58 |
+
latents = self.norm2(latents)
|
| 59 |
+
|
| 60 |
+
b, l, _ = latents.shape
|
| 61 |
+
|
| 62 |
+
q = self.to_q(latents)
|
| 63 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
| 64 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
| 65 |
+
|
| 66 |
+
q = reshape_tensor(q, self.heads)
|
| 67 |
+
k = reshape_tensor(k, self.heads)
|
| 68 |
+
v = reshape_tensor(v, self.heads)
|
| 69 |
+
|
| 70 |
+
# attention
|
| 71 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
| 72 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
| 73 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 74 |
+
out = weight @ v
|
| 75 |
+
|
| 76 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
| 77 |
+
|
| 78 |
+
return self.to_out(out)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class Resampler(nn.Module):
|
| 82 |
+
def __init__(
|
| 83 |
+
self,
|
| 84 |
+
dim=1280,
|
| 85 |
+
depth=4,
|
| 86 |
+
dim_head=64,
|
| 87 |
+
heads=20,
|
| 88 |
+
num_queries=64,
|
| 89 |
+
embedding_dim=768,
|
| 90 |
+
output_dim=1024,
|
| 91 |
+
ff_mult=4,
|
| 92 |
+
max_seq_len: int = 257, # CLIP tokens + CLS token
|
| 93 |
+
apply_pos_emb: bool = False,
|
| 94 |
+
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
| 95 |
+
):
|
| 96 |
+
super().__init__()
|
| 97 |
+
self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
|
| 98 |
+
|
| 99 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
| 100 |
+
|
| 101 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
| 102 |
+
|
| 103 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
| 104 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
| 105 |
+
|
| 106 |
+
self.to_latents_from_mean_pooled_seq = (
|
| 107 |
+
nn.Sequential(
|
| 108 |
+
nn.LayerNorm(dim),
|
| 109 |
+
nn.Linear(dim, dim * num_latents_mean_pooled),
|
| 110 |
+
Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
|
| 111 |
+
)
|
| 112 |
+
if num_latents_mean_pooled > 0
|
| 113 |
+
else None
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
self.layers = nn.ModuleList([])
|
| 117 |
+
for _ in range(depth):
|
| 118 |
+
self.layers.append(
|
| 119 |
+
nn.ModuleList(
|
| 120 |
+
[
|
| 121 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
| 122 |
+
FeedForward(dim=dim, mult=ff_mult),
|
| 123 |
+
]
|
| 124 |
+
)
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
def forward(self, x):
|
| 128 |
+
if self.pos_emb is not None:
|
| 129 |
+
n, device = x.shape[1], x.device
|
| 130 |
+
pos_emb = self.pos_emb(torch.arange(n, device=device))
|
| 131 |
+
x = x + pos_emb
|
| 132 |
+
|
| 133 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
| 134 |
+
|
| 135 |
+
x = self.proj_in(x)
|
| 136 |
+
|
| 137 |
+
if self.to_latents_from_mean_pooled_seq:
|
| 138 |
+
meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
|
| 139 |
+
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
|
| 140 |
+
latents = torch.cat((meanpooled_latents, latents), dim=-2)
|
| 141 |
+
|
| 142 |
+
for attn, ff in self.layers:
|
| 143 |
+
latents = attn(x, latents) + latents
|
| 144 |
+
latents = ff(latents) + latents
|
| 145 |
+
|
| 146 |
+
latents = self.proj_out(latents)
|
| 147 |
+
return self.norm_out(latents)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def masked_mean(t, *, dim, mask=None):
|
| 151 |
+
if mask is None:
|
| 152 |
+
return t.mean(dim=dim)
|
| 153 |
+
|
| 154 |
+
denom = mask.sum(dim=dim, keepdim=True)
|
| 155 |
+
mask = rearrange(mask, "b n -> b n 1")
|
| 156 |
+
masked_t = t.masked_fill(~mask, 0.0)
|
| 157 |
+
|
| 158 |
+
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
|
| 159 |
+
|