Spaces:
Build error
Build error
Create min_sdxl.py
Browse files- module/min_sdxl.py +907 -0
module/min_sdxl.py
ADDED
|
@@ -0,0 +1,907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from minSDXL by Simo Ryu:
|
| 2 |
+
# https://github.com/cloneofsimo/minSDXL ,
|
| 3 |
+
# which is in turn modified from the original code of:
|
| 4 |
+
# https://github.com/huggingface/diffusers
|
| 5 |
+
# So has APACHE 2.0 license
|
| 6 |
+
|
| 7 |
+
from typing import Optional, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
import math
|
| 13 |
+
import inspect
|
| 14 |
+
|
| 15 |
+
from collections import namedtuple
|
| 16 |
+
|
| 17 |
+
from torch.fft import fftn, fftshift, ifftn, ifftshift
|
| 18 |
+
|
| 19 |
+
from diffusers.models.attention_processor import AttnProcessor, AttnProcessor2_0
|
| 20 |
+
|
| 21 |
+
# Implementation of FreeU for minsdxl
|
| 22 |
+
|
| 23 |
+
def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.Tensor":
|
| 24 |
+
"""Fourier filter as introduced in FreeU (https://arxiv.org/abs/2309.11497).
|
| 25 |
+
This version of the method comes from here:
|
| 26 |
+
https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706
|
| 27 |
+
"""
|
| 28 |
+
x = x_in
|
| 29 |
+
B, C, H, W = x.shape
|
| 30 |
+
|
| 31 |
+
# Non-power of 2 images must be float32
|
| 32 |
+
if (W & (W - 1)) != 0 or (H & (H - 1)) != 0:
|
| 33 |
+
x = x.to(dtype=torch.float32)
|
| 34 |
+
|
| 35 |
+
# FFT
|
| 36 |
+
x_freq = fftn(x, dim=(-2, -1))
|
| 37 |
+
x_freq = fftshift(x_freq, dim=(-2, -1))
|
| 38 |
+
|
| 39 |
+
B, C, H, W = x_freq.shape
|
| 40 |
+
mask = torch.ones((B, C, H, W), device=x.device)
|
| 41 |
+
|
| 42 |
+
crow, ccol = H // 2, W // 2
|
| 43 |
+
mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale
|
| 44 |
+
x_freq = x_freq * mask
|
| 45 |
+
|
| 46 |
+
# IFFT
|
| 47 |
+
x_freq = ifftshift(x_freq, dim=(-2, -1))
|
| 48 |
+
x_filtered = ifftn(x_freq, dim=(-2, -1)).real
|
| 49 |
+
|
| 50 |
+
return x_filtered.to(dtype=x_in.dtype)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def apply_freeu(
|
| 54 |
+
resolution_idx: int, hidden_states: "torch.Tensor", res_hidden_states: "torch.Tensor", **freeu_kwargs):
|
| 55 |
+
"""Applies the FreeU mechanism as introduced in https:
|
| 56 |
+
//arxiv.org/abs/2309.11497. Adapted from the official code repository: https://github.com/ChenyangSi/FreeU.
|
| 57 |
+
Args:
|
| 58 |
+
resolution_idx (`int`): Integer denoting the UNet block where FreeU is being applied.
|
| 59 |
+
hidden_states (`torch.Tensor`): Inputs to the underlying block.
|
| 60 |
+
res_hidden_states (`torch.Tensor`): Features from the skip block corresponding to the underlying block.
|
| 61 |
+
s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features.
|
| 62 |
+
s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features.
|
| 63 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
| 64 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
| 65 |
+
"""
|
| 66 |
+
if resolution_idx == 0:
|
| 67 |
+
num_half_channels = hidden_states.shape[1] // 2
|
| 68 |
+
hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b1"]
|
| 69 |
+
res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s1"])
|
| 70 |
+
if resolution_idx == 1:
|
| 71 |
+
num_half_channels = hidden_states.shape[1] // 2
|
| 72 |
+
hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b2"]
|
| 73 |
+
res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s2"])
|
| 74 |
+
|
| 75 |
+
return hidden_states, res_hidden_states
|
| 76 |
+
|
| 77 |
+
# Diffusers-style LoRA to keep everything in the min_sdxl.py file
|
| 78 |
+
|
| 79 |
+
class LoRALinearLayer(nn.Module):
|
| 80 |
+
r"""
|
| 81 |
+
A linear layer that is used with LoRA.
|
| 82 |
+
Parameters:
|
| 83 |
+
in_features (`int`):
|
| 84 |
+
Number of input features.
|
| 85 |
+
out_features (`int`):
|
| 86 |
+
Number of output features.
|
| 87 |
+
rank (`int`, `optional`, defaults to 4):
|
| 88 |
+
The rank of the LoRA layer.
|
| 89 |
+
network_alpha (`float`, `optional`, defaults to `None`):
|
| 90 |
+
The value of the network alpha used for stable learning and preventing underflow. This value has the same
|
| 91 |
+
meaning as the `--network_alpha` option in the kohya-ss trainer script. See
|
| 92 |
+
https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
| 93 |
+
device (`torch.device`, `optional`, defaults to `None`):
|
| 94 |
+
The device to use for the layer's weights.
|
| 95 |
+
dtype (`torch.dtype`, `optional`, defaults to `None`):
|
| 96 |
+
The dtype to use for the layer's weights.
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
def __init__(
|
| 100 |
+
self,
|
| 101 |
+
in_features: int,
|
| 102 |
+
out_features: int,
|
| 103 |
+
rank: int = 4,
|
| 104 |
+
network_alpha: Optional[float] = None,
|
| 105 |
+
device: Optional[Union[torch.device, str]] = None,
|
| 106 |
+
dtype: Optional[torch.dtype] = None,
|
| 107 |
+
):
|
| 108 |
+
super().__init__()
|
| 109 |
+
|
| 110 |
+
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
|
| 111 |
+
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
|
| 112 |
+
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
| 113 |
+
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
| 114 |
+
self.network_alpha = network_alpha
|
| 115 |
+
self.rank = rank
|
| 116 |
+
self.out_features = out_features
|
| 117 |
+
self.in_features = in_features
|
| 118 |
+
|
| 119 |
+
nn.init.normal_(self.down.weight, std=1 / rank)
|
| 120 |
+
nn.init.zeros_(self.up.weight)
|
| 121 |
+
|
| 122 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 123 |
+
orig_dtype = hidden_states.dtype
|
| 124 |
+
dtype = self.down.weight.dtype
|
| 125 |
+
|
| 126 |
+
down_hidden_states = self.down(hidden_states.to(dtype))
|
| 127 |
+
up_hidden_states = self.up(down_hidden_states)
|
| 128 |
+
|
| 129 |
+
if self.network_alpha is not None:
|
| 130 |
+
up_hidden_states *= self.network_alpha / self.rank
|
| 131 |
+
|
| 132 |
+
return up_hidden_states.to(orig_dtype)
|
| 133 |
+
|
| 134 |
+
class LoRACompatibleLinear(nn.Linear):
|
| 135 |
+
"""
|
| 136 |
+
A Linear layer that can be used with LoRA.
|
| 137 |
+
"""
|
| 138 |
+
|
| 139 |
+
def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
|
| 140 |
+
super().__init__(*args, **kwargs)
|
| 141 |
+
self.lora_layer = lora_layer
|
| 142 |
+
|
| 143 |
+
def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
|
| 144 |
+
self.lora_layer = lora_layer
|
| 145 |
+
|
| 146 |
+
def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
|
| 147 |
+
if self.lora_layer is None:
|
| 148 |
+
return
|
| 149 |
+
|
| 150 |
+
dtype, device = self.weight.data.dtype, self.weight.data.device
|
| 151 |
+
|
| 152 |
+
w_orig = self.weight.data.float()
|
| 153 |
+
w_up = self.lora_layer.up.weight.data.float()
|
| 154 |
+
w_down = self.lora_layer.down.weight.data.float()
|
| 155 |
+
|
| 156 |
+
if self.lora_layer.network_alpha is not None:
|
| 157 |
+
w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank
|
| 158 |
+
|
| 159 |
+
fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
|
| 160 |
+
|
| 161 |
+
if safe_fusing and torch.isnan(fused_weight).any().item():
|
| 162 |
+
raise ValueError(
|
| 163 |
+
"This LoRA weight seems to be broken. "
|
| 164 |
+
f"Encountered NaN values when trying to fuse LoRA weights for {self}."
|
| 165 |
+
"LoRA weights will not be fused."
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
self.weight.data = fused_weight.to(device=device, dtype=dtype)
|
| 169 |
+
|
| 170 |
+
# we can drop the lora layer now
|
| 171 |
+
self.lora_layer = None
|
| 172 |
+
|
| 173 |
+
# offload the up and down matrices to CPU to not blow the memory
|
| 174 |
+
self.w_up = w_up.cpu()
|
| 175 |
+
self.w_down = w_down.cpu()
|
| 176 |
+
self._lora_scale = lora_scale
|
| 177 |
+
|
| 178 |
+
def _unfuse_lora(self):
|
| 179 |
+
if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
|
| 180 |
+
return
|
| 181 |
+
|
| 182 |
+
fused_weight = self.weight.data
|
| 183 |
+
dtype, device = fused_weight.dtype, fused_weight.device
|
| 184 |
+
|
| 185 |
+
w_up = self.w_up.to(device=device).float()
|
| 186 |
+
w_down = self.w_down.to(device).float()
|
| 187 |
+
|
| 188 |
+
unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
|
| 189 |
+
self.weight.data = unfused_weight.to(device=device, dtype=dtype)
|
| 190 |
+
|
| 191 |
+
self.w_up = None
|
| 192 |
+
self.w_down = None
|
| 193 |
+
|
| 194 |
+
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
|
| 195 |
+
if self.lora_layer is None:
|
| 196 |
+
out = super().forward(hidden_states)
|
| 197 |
+
return out
|
| 198 |
+
else:
|
| 199 |
+
out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))
|
| 200 |
+
return out
|
| 201 |
+
|
| 202 |
+
class Timesteps(nn.Module):
|
| 203 |
+
def __init__(self, num_channels: int = 320):
|
| 204 |
+
super().__init__()
|
| 205 |
+
self.num_channels = num_channels
|
| 206 |
+
|
| 207 |
+
def forward(self, timesteps):
|
| 208 |
+
half_dim = self.num_channels // 2
|
| 209 |
+
exponent = -math.log(10000) * torch.arange(
|
| 210 |
+
half_dim, dtype=torch.float32, device=timesteps.device
|
| 211 |
+
)
|
| 212 |
+
exponent = exponent / (half_dim - 0.0)
|
| 213 |
+
|
| 214 |
+
emb = torch.exp(exponent)
|
| 215 |
+
emb = timesteps[:, None].float() * emb[None, :]
|
| 216 |
+
|
| 217 |
+
sin_emb = torch.sin(emb)
|
| 218 |
+
cos_emb = torch.cos(emb)
|
| 219 |
+
emb = torch.cat([cos_emb, sin_emb], dim=-1)
|
| 220 |
+
|
| 221 |
+
return emb
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class TimestepEmbedding(nn.Module):
|
| 225 |
+
def __init__(self, in_features, out_features):
|
| 226 |
+
super(TimestepEmbedding, self).__init__()
|
| 227 |
+
self.linear_1 = nn.Linear(in_features, out_features, bias=True)
|
| 228 |
+
self.act = nn.SiLU()
|
| 229 |
+
self.linear_2 = nn.Linear(out_features, out_features, bias=True)
|
| 230 |
+
|
| 231 |
+
def forward(self, sample):
|
| 232 |
+
sample = self.linear_1(sample)
|
| 233 |
+
sample = self.act(sample)
|
| 234 |
+
sample = self.linear_2(sample)
|
| 235 |
+
|
| 236 |
+
return sample
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
class ResnetBlock2D(nn.Module):
|
| 240 |
+
def __init__(self, in_channels, out_channels, conv_shortcut=True):
|
| 241 |
+
super(ResnetBlock2D, self).__init__()
|
| 242 |
+
self.norm1 = nn.GroupNorm(32, in_channels, eps=1e-05, affine=True)
|
| 243 |
+
self.conv1 = nn.Conv2d(
|
| 244 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 245 |
+
)
|
| 246 |
+
self.time_emb_proj = nn.Linear(1280, out_channels, bias=True)
|
| 247 |
+
self.norm2 = nn.GroupNorm(32, out_channels, eps=1e-05, affine=True)
|
| 248 |
+
self.dropout = nn.Dropout(p=0.0, inplace=False)
|
| 249 |
+
self.conv2 = nn.Conv2d(
|
| 250 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 251 |
+
)
|
| 252 |
+
self.nonlinearity = nn.SiLU()
|
| 253 |
+
self.conv_shortcut = None
|
| 254 |
+
if conv_shortcut:
|
| 255 |
+
self.conv_shortcut = nn.Conv2d(
|
| 256 |
+
in_channels, out_channels, kernel_size=1, stride=1
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
def forward(self, input_tensor, temb):
|
| 260 |
+
hidden_states = input_tensor
|
| 261 |
+
hidden_states = self.norm1(hidden_states)
|
| 262 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 263 |
+
|
| 264 |
+
hidden_states = self.conv1(hidden_states)
|
| 265 |
+
|
| 266 |
+
temb = self.nonlinearity(temb)
|
| 267 |
+
temb = self.time_emb_proj(temb)[:, :, None, None]
|
| 268 |
+
hidden_states = hidden_states + temb
|
| 269 |
+
hidden_states = self.norm2(hidden_states)
|
| 270 |
+
|
| 271 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 272 |
+
hidden_states = self.dropout(hidden_states)
|
| 273 |
+
hidden_states = self.conv2(hidden_states)
|
| 274 |
+
|
| 275 |
+
if self.conv_shortcut is not None:
|
| 276 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
| 277 |
+
|
| 278 |
+
output_tensor = input_tensor + hidden_states
|
| 279 |
+
|
| 280 |
+
return output_tensor
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
class Attention(nn.Module):
|
| 284 |
+
def __init__(
|
| 285 |
+
self, inner_dim, cross_attention_dim=None, num_heads=None, dropout=0.0, processor=None, scale_qk=True
|
| 286 |
+
):
|
| 287 |
+
super(Attention, self).__init__()
|
| 288 |
+
if num_heads is None:
|
| 289 |
+
self.head_dim = 64
|
| 290 |
+
self.num_heads = inner_dim // self.head_dim
|
| 291 |
+
else:
|
| 292 |
+
self.num_heads = num_heads
|
| 293 |
+
self.head_dim = inner_dim // num_heads
|
| 294 |
+
|
| 295 |
+
self.scale = self.head_dim**-0.5
|
| 296 |
+
if cross_attention_dim is None:
|
| 297 |
+
cross_attention_dim = inner_dim
|
| 298 |
+
self.to_q = LoRACompatibleLinear(inner_dim, inner_dim, bias=False)
|
| 299 |
+
self.to_k = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False)
|
| 300 |
+
self.to_v = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False)
|
| 301 |
+
|
| 302 |
+
self.to_out = nn.ModuleList(
|
| 303 |
+
[LoRACompatibleLinear(inner_dim, inner_dim), nn.Dropout(dropout, inplace=False)]
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
self.scale_qk = scale_qk
|
| 307 |
+
if processor is None:
|
| 308 |
+
processor = (
|
| 309 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
|
| 310 |
+
)
|
| 311 |
+
self.set_processor(processor)
|
| 312 |
+
|
| 313 |
+
def forward(
|
| 314 |
+
self,
|
| 315 |
+
hidden_states: torch.FloatTensor,
|
| 316 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 317 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 318 |
+
**cross_attention_kwargs,
|
| 319 |
+
) -> torch.Tensor:
|
| 320 |
+
r"""
|
| 321 |
+
The forward method of the `Attention` class.
|
| 322 |
+
Args:
|
| 323 |
+
hidden_states (`torch.Tensor`):
|
| 324 |
+
The hidden states of the query.
|
| 325 |
+
encoder_hidden_states (`torch.Tensor`, *optional*):
|
| 326 |
+
The hidden states of the encoder.
|
| 327 |
+
attention_mask (`torch.Tensor`, *optional*):
|
| 328 |
+
The attention mask to use. If `None`, no mask is applied.
|
| 329 |
+
**cross_attention_kwargs:
|
| 330 |
+
Additional keyword arguments to pass along to the cross attention.
|
| 331 |
+
Returns:
|
| 332 |
+
`torch.Tensor`: The output of the attention layer.
|
| 333 |
+
"""
|
| 334 |
+
# The `Attention` class can call different attention processors / attention functions
|
| 335 |
+
# here we simply pass along all tensors to the selected processor class
|
| 336 |
+
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
| 337 |
+
|
| 338 |
+
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
|
| 339 |
+
unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
|
| 340 |
+
if len(unused_kwargs) > 0:
|
| 341 |
+
print(
|
| 342 |
+
f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
|
| 343 |
+
)
|
| 344 |
+
cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}
|
| 345 |
+
|
| 346 |
+
return self.processor(
|
| 347 |
+
self,
|
| 348 |
+
hidden_states,
|
| 349 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 350 |
+
attention_mask=attention_mask,
|
| 351 |
+
**cross_attention_kwargs,
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
def orig_forward(self, hidden_states, encoder_hidden_states=None):
|
| 355 |
+
q = self.to_q(hidden_states)
|
| 356 |
+
k = (
|
| 357 |
+
self.to_k(encoder_hidden_states)
|
| 358 |
+
if encoder_hidden_states is not None
|
| 359 |
+
else self.to_k(hidden_states)
|
| 360 |
+
)
|
| 361 |
+
v = (
|
| 362 |
+
self.to_v(encoder_hidden_states)
|
| 363 |
+
if encoder_hidden_states is not None
|
| 364 |
+
else self.to_v(hidden_states)
|
| 365 |
+
)
|
| 366 |
+
b, t, c = q.size()
|
| 367 |
+
|
| 368 |
+
q = q.view(q.size(0), q.size(1), self.num_heads, self.head_dim).transpose(1, 2)
|
| 369 |
+
k = k.view(k.size(0), k.size(1), self.num_heads, self.head_dim).transpose(1, 2)
|
| 370 |
+
v = v.view(v.size(0), v.size(1), self.num_heads, self.head_dim).transpose(1, 2)
|
| 371 |
+
|
| 372 |
+
# scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
|
| 373 |
+
# attn_weights = torch.softmax(scores, dim=-1)
|
| 374 |
+
# attn_output = torch.matmul(attn_weights, v)
|
| 375 |
+
|
| 376 |
+
attn_output = F.scaled_dot_product_attention(
|
| 377 |
+
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False, scale=self.scale,
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(b, t, c)
|
| 381 |
+
|
| 382 |
+
for layer in self.to_out:
|
| 383 |
+
attn_output = layer(attn_output)
|
| 384 |
+
|
| 385 |
+
return attn_output
|
| 386 |
+
|
| 387 |
+
def set_processor(self, processor) -> None:
|
| 388 |
+
r"""
|
| 389 |
+
Set the attention processor to use.
|
| 390 |
+
Args:
|
| 391 |
+
processor (`AttnProcessor`):
|
| 392 |
+
The attention processor to use.
|
| 393 |
+
"""
|
| 394 |
+
# if current processor is in `self._modules` and if passed `processor` is not, we need to
|
| 395 |
+
# pop `processor` from `self._modules`
|
| 396 |
+
if (
|
| 397 |
+
hasattr(self, "processor")
|
| 398 |
+
and isinstance(self.processor, torch.nn.Module)
|
| 399 |
+
and not isinstance(processor, torch.nn.Module)
|
| 400 |
+
):
|
| 401 |
+
print(f"You are removing possibly trained weights of {self.processor} with {processor}")
|
| 402 |
+
self._modules.pop("processor")
|
| 403 |
+
|
| 404 |
+
self.processor = processor
|
| 405 |
+
|
| 406 |
+
def get_processor(self, return_deprecated_lora: bool = False):
|
| 407 |
+
r"""
|
| 408 |
+
Get the attention processor in use.
|
| 409 |
+
Args:
|
| 410 |
+
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
|
| 411 |
+
Set to `True` to return the deprecated LoRA attention processor.
|
| 412 |
+
Returns:
|
| 413 |
+
"AttentionProcessor": The attention processor in use.
|
| 414 |
+
"""
|
| 415 |
+
if not return_deprecated_lora:
|
| 416 |
+
return self.processor
|
| 417 |
+
|
| 418 |
+
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
|
| 419 |
+
# serialization format for LoRA Attention Processors. It should be deleted once the integration
|
| 420 |
+
# with PEFT is completed.
|
| 421 |
+
is_lora_activated = {
|
| 422 |
+
name: module.lora_layer is not None
|
| 423 |
+
for name, module in self.named_modules()
|
| 424 |
+
if hasattr(module, "lora_layer")
|
| 425 |
+
}
|
| 426 |
+
|
| 427 |
+
# 1. if no layer has a LoRA activated we can return the processor as usual
|
| 428 |
+
if not any(is_lora_activated.values()):
|
| 429 |
+
return self.processor
|
| 430 |
+
|
| 431 |
+
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
|
| 432 |
+
is_lora_activated.pop("add_k_proj", None)
|
| 433 |
+
is_lora_activated.pop("add_v_proj", None)
|
| 434 |
+
# 2. else it is not possible that only some layers have LoRA activated
|
| 435 |
+
if not all(is_lora_activated.values()):
|
| 436 |
+
raise ValueError(
|
| 437 |
+
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
|
| 441 |
+
non_lora_processor_cls_name = self.processor.__class__.__name__
|
| 442 |
+
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)
|
| 443 |
+
|
| 444 |
+
hidden_size = self.inner_dim
|
| 445 |
+
|
| 446 |
+
# now create a LoRA attention processor from the LoRA layers
|
| 447 |
+
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
|
| 448 |
+
kwargs = {
|
| 449 |
+
"cross_attention_dim": self.cross_attention_dim,
|
| 450 |
+
"rank": self.to_q.lora_layer.rank,
|
| 451 |
+
"network_alpha": self.to_q.lora_layer.network_alpha,
|
| 452 |
+
"q_rank": self.to_q.lora_layer.rank,
|
| 453 |
+
"q_hidden_size": self.to_q.lora_layer.out_features,
|
| 454 |
+
"k_rank": self.to_k.lora_layer.rank,
|
| 455 |
+
"k_hidden_size": self.to_k.lora_layer.out_features,
|
| 456 |
+
"v_rank": self.to_v.lora_layer.rank,
|
| 457 |
+
"v_hidden_size": self.to_v.lora_layer.out_features,
|
| 458 |
+
"out_rank": self.to_out[0].lora_layer.rank,
|
| 459 |
+
"out_hidden_size": self.to_out[0].lora_layer.out_features,
|
| 460 |
+
}
|
| 461 |
+
|
| 462 |
+
if hasattr(self.processor, "attention_op"):
|
| 463 |
+
kwargs["attention_op"] = self.processor.attention_op
|
| 464 |
+
|
| 465 |
+
lora_processor = lora_processor_cls(hidden_size, **kwargs)
|
| 466 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
| 467 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
| 468 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
| 469 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
| 470 |
+
elif lora_processor_cls == LoRAAttnAddedKVProcessor:
|
| 471 |
+
lora_processor = lora_processor_cls(
|
| 472 |
+
hidden_size,
|
| 473 |
+
cross_attention_dim=self.add_k_proj.weight.shape[0],
|
| 474 |
+
rank=self.to_q.lora_layer.rank,
|
| 475 |
+
network_alpha=self.to_q.lora_layer.network_alpha,
|
| 476 |
+
)
|
| 477 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
| 478 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
| 479 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
| 480 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
| 481 |
+
|
| 482 |
+
# only save if used
|
| 483 |
+
if self.add_k_proj.lora_layer is not None:
|
| 484 |
+
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
|
| 485 |
+
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
|
| 486 |
+
else:
|
| 487 |
+
lora_processor.add_k_proj_lora = None
|
| 488 |
+
lora_processor.add_v_proj_lora = None
|
| 489 |
+
else:
|
| 490 |
+
raise ValueError(f"{lora_processor_cls} does not exist.")
|
| 491 |
+
|
| 492 |
+
return lora_processor
|
| 493 |
+
|
| 494 |
+
class GEGLU(nn.Module):
|
| 495 |
+
def __init__(self, in_features, out_features):
|
| 496 |
+
super(GEGLU, self).__init__()
|
| 497 |
+
self.proj = nn.Linear(in_features, out_features * 2, bias=True)
|
| 498 |
+
|
| 499 |
+
def forward(self, x):
|
| 500 |
+
x_proj = self.proj(x)
|
| 501 |
+
x1, x2 = x_proj.chunk(2, dim=-1)
|
| 502 |
+
return x1 * torch.nn.functional.gelu(x2)
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
class FeedForward(nn.Module):
|
| 506 |
+
def __init__(self, in_features, out_features):
|
| 507 |
+
super(FeedForward, self).__init__()
|
| 508 |
+
|
| 509 |
+
self.net = nn.ModuleList(
|
| 510 |
+
[
|
| 511 |
+
GEGLU(in_features, out_features * 4),
|
| 512 |
+
nn.Dropout(p=0.0, inplace=False),
|
| 513 |
+
nn.Linear(out_features * 4, out_features, bias=True),
|
| 514 |
+
]
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
def forward(self, x):
|
| 518 |
+
for layer in self.net:
|
| 519 |
+
x = layer(x)
|
| 520 |
+
return x
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
class BasicTransformerBlock(nn.Module):
|
| 524 |
+
def __init__(self, hidden_size):
|
| 525 |
+
super(BasicTransformerBlock, self).__init__()
|
| 526 |
+
self.norm1 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
|
| 527 |
+
self.attn1 = Attention(hidden_size)
|
| 528 |
+
self.norm2 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
|
| 529 |
+
self.attn2 = Attention(hidden_size, 2048)
|
| 530 |
+
self.norm3 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
|
| 531 |
+
self.ff = FeedForward(hidden_size, hidden_size)
|
| 532 |
+
|
| 533 |
+
def forward(self, x, encoder_hidden_states=None):
|
| 534 |
+
residual = x
|
| 535 |
+
|
| 536 |
+
x = self.norm1(x)
|
| 537 |
+
x = self.attn1(x)
|
| 538 |
+
x = x + residual
|
| 539 |
+
|
| 540 |
+
residual = x
|
| 541 |
+
|
| 542 |
+
x = self.norm2(x)
|
| 543 |
+
if encoder_hidden_states is not None:
|
| 544 |
+
x = self.attn2(x, encoder_hidden_states)
|
| 545 |
+
else:
|
| 546 |
+
x = self.attn2(x)
|
| 547 |
+
x = x + residual
|
| 548 |
+
|
| 549 |
+
residual = x
|
| 550 |
+
|
| 551 |
+
x = self.norm3(x)
|
| 552 |
+
x = self.ff(x)
|
| 553 |
+
x = x + residual
|
| 554 |
+
return x
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
class Transformer2DModel(nn.Module):
|
| 558 |
+
def __init__(self, in_channels, out_channels, n_layers):
|
| 559 |
+
super(Transformer2DModel, self).__init__()
|
| 560 |
+
self.norm = nn.GroupNorm(32, in_channels, eps=1e-06, affine=True)
|
| 561 |
+
self.proj_in = nn.Linear(in_channels, out_channels, bias=True)
|
| 562 |
+
self.transformer_blocks = nn.ModuleList(
|
| 563 |
+
[BasicTransformerBlock(out_channels) for _ in range(n_layers)]
|
| 564 |
+
)
|
| 565 |
+
self.proj_out = nn.Linear(out_channels, out_channels, bias=True)
|
| 566 |
+
|
| 567 |
+
def forward(self, hidden_states, encoder_hidden_states=None):
|
| 568 |
+
batch, _, height, width = hidden_states.shape
|
| 569 |
+
res = hidden_states
|
| 570 |
+
hidden_states = self.norm(hidden_states)
|
| 571 |
+
inner_dim = hidden_states.shape[1]
|
| 572 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 573 |
+
batch, height * width, inner_dim
|
| 574 |
+
)
|
| 575 |
+
hidden_states = self.proj_in(hidden_states)
|
| 576 |
+
|
| 577 |
+
for block in self.transformer_blocks:
|
| 578 |
+
hidden_states = block(hidden_states, encoder_hidden_states)
|
| 579 |
+
|
| 580 |
+
hidden_states = self.proj_out(hidden_states)
|
| 581 |
+
hidden_states = (
|
| 582 |
+
hidden_states.reshape(batch, height, width, inner_dim)
|
| 583 |
+
.permute(0, 3, 1, 2)
|
| 584 |
+
.contiguous()
|
| 585 |
+
)
|
| 586 |
+
|
| 587 |
+
return hidden_states + res
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
class Downsample2D(nn.Module):
|
| 591 |
+
def __init__(self, in_channels, out_channels):
|
| 592 |
+
super(Downsample2D, self).__init__()
|
| 593 |
+
self.conv = nn.Conv2d(
|
| 594 |
+
in_channels, out_channels, kernel_size=3, stride=2, padding=1
|
| 595 |
+
)
|
| 596 |
+
|
| 597 |
+
def forward(self, x):
|
| 598 |
+
return self.conv(x)
|
| 599 |
+
|
| 600 |
+
|
| 601 |
+
class Upsample2D(nn.Module):
|
| 602 |
+
def __init__(self, in_channels, out_channels):
|
| 603 |
+
super(Upsample2D, self).__init__()
|
| 604 |
+
self.conv = nn.Conv2d(
|
| 605 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
def forward(self, x):
|
| 609 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 610 |
+
return self.conv(x)
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
class DownBlock2D(nn.Module):
|
| 614 |
+
def __init__(self, in_channels, out_channels):
|
| 615 |
+
super(DownBlock2D, self).__init__()
|
| 616 |
+
self.resnets = nn.ModuleList(
|
| 617 |
+
[
|
| 618 |
+
ResnetBlock2D(in_channels, out_channels, conv_shortcut=False),
|
| 619 |
+
ResnetBlock2D(out_channels, out_channels, conv_shortcut=False),
|
| 620 |
+
]
|
| 621 |
+
)
|
| 622 |
+
self.downsamplers = nn.ModuleList([Downsample2D(out_channels, out_channels)])
|
| 623 |
+
|
| 624 |
+
def forward(self, hidden_states, temb):
|
| 625 |
+
output_states = []
|
| 626 |
+
for module in self.resnets:
|
| 627 |
+
hidden_states = module(hidden_states, temb)
|
| 628 |
+
output_states.append(hidden_states)
|
| 629 |
+
|
| 630 |
+
hidden_states = self.downsamplers[0](hidden_states)
|
| 631 |
+
output_states.append(hidden_states)
|
| 632 |
+
|
| 633 |
+
return hidden_states, output_states
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
class CrossAttnDownBlock2D(nn.Module):
|
| 637 |
+
def __init__(self, in_channels, out_channels, n_layers, has_downsamplers=True):
|
| 638 |
+
super(CrossAttnDownBlock2D, self).__init__()
|
| 639 |
+
self.attentions = nn.ModuleList(
|
| 640 |
+
[
|
| 641 |
+
Transformer2DModel(out_channels, out_channels, n_layers),
|
| 642 |
+
Transformer2DModel(out_channels, out_channels, n_layers),
|
| 643 |
+
]
|
| 644 |
+
)
|
| 645 |
+
self.resnets = nn.ModuleList(
|
| 646 |
+
[
|
| 647 |
+
ResnetBlock2D(in_channels, out_channels),
|
| 648 |
+
ResnetBlock2D(out_channels, out_channels, conv_shortcut=False),
|
| 649 |
+
]
|
| 650 |
+
)
|
| 651 |
+
self.downsamplers = None
|
| 652 |
+
if has_downsamplers:
|
| 653 |
+
self.downsamplers = nn.ModuleList(
|
| 654 |
+
[Downsample2D(out_channels, out_channels)]
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
def forward(self, hidden_states, temb, encoder_hidden_states):
|
| 658 |
+
output_states = []
|
| 659 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 660 |
+
hidden_states = resnet(hidden_states, temb)
|
| 661 |
+
hidden_states = attn(
|
| 662 |
+
hidden_states,
|
| 663 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 664 |
+
)
|
| 665 |
+
output_states.append(hidden_states)
|
| 666 |
+
|
| 667 |
+
if self.downsamplers is not None:
|
| 668 |
+
hidden_states = self.downsamplers[0](hidden_states)
|
| 669 |
+
output_states.append(hidden_states)
|
| 670 |
+
|
| 671 |
+
return hidden_states, output_states
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
class CrossAttnUpBlock2D(nn.Module):
|
| 675 |
+
def __init__(self, in_channels, out_channels, prev_output_channel, n_layers):
|
| 676 |
+
super(CrossAttnUpBlock2D, self).__init__()
|
| 677 |
+
self.attentions = nn.ModuleList(
|
| 678 |
+
[
|
| 679 |
+
Transformer2DModel(out_channels, out_channels, n_layers),
|
| 680 |
+
Transformer2DModel(out_channels, out_channels, n_layers),
|
| 681 |
+
Transformer2DModel(out_channels, out_channels, n_layers),
|
| 682 |
+
]
|
| 683 |
+
)
|
| 684 |
+
self.resnets = nn.ModuleList(
|
| 685 |
+
[
|
| 686 |
+
ResnetBlock2D(prev_output_channel + out_channels, out_channels),
|
| 687 |
+
ResnetBlock2D(2 * out_channels, out_channels),
|
| 688 |
+
ResnetBlock2D(out_channels + in_channels, out_channels),
|
| 689 |
+
]
|
| 690 |
+
)
|
| 691 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)])
|
| 692 |
+
|
| 693 |
+
def forward(
|
| 694 |
+
self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states
|
| 695 |
+
):
|
| 696 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 697 |
+
# pop res hidden states
|
| 698 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 699 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 700 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 701 |
+
hidden_states = resnet(hidden_states, temb)
|
| 702 |
+
hidden_states = attn(
|
| 703 |
+
hidden_states,
|
| 704 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 705 |
+
)
|
| 706 |
+
|
| 707 |
+
if self.upsamplers is not None:
|
| 708 |
+
for upsampler in self.upsamplers:
|
| 709 |
+
hidden_states = upsampler(hidden_states)
|
| 710 |
+
|
| 711 |
+
return hidden_states
|
| 712 |
+
|
| 713 |
+
|
| 714 |
+
class UpBlock2D(nn.Module):
|
| 715 |
+
def __init__(self, in_channels, out_channels, prev_output_channel):
|
| 716 |
+
super(UpBlock2D, self).__init__()
|
| 717 |
+
self.resnets = nn.ModuleList(
|
| 718 |
+
[
|
| 719 |
+
ResnetBlock2D(out_channels + prev_output_channel, out_channels),
|
| 720 |
+
ResnetBlock2D(out_channels * 2, out_channels),
|
| 721 |
+
ResnetBlock2D(out_channels + in_channels, out_channels),
|
| 722 |
+
]
|
| 723 |
+
)
|
| 724 |
+
|
| 725 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
|
| 726 |
+
|
| 727 |
+
is_freeu_enabled = (
|
| 728 |
+
getattr(self, "s1", None)
|
| 729 |
+
and getattr(self, "s2", None)
|
| 730 |
+
and getattr(self, "b1", None)
|
| 731 |
+
and getattr(self, "b2", None)
|
| 732 |
+
and getattr(self, "resolution_idx", None)
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
for resnet in self.resnets:
|
| 736 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 737 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 738 |
+
|
| 739 |
+
|
| 740 |
+
if is_freeu_enabled:
|
| 741 |
+
hidden_states, res_hidden_states = apply_freeu(
|
| 742 |
+
self.resolution_idx,
|
| 743 |
+
hidden_states,
|
| 744 |
+
res_hidden_states,
|
| 745 |
+
s1=self.s1,
|
| 746 |
+
s2=self.s2,
|
| 747 |
+
b1=self.b1,
|
| 748 |
+
b2=self.b2,
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 752 |
+
hidden_states = resnet(hidden_states, temb)
|
| 753 |
+
|
| 754 |
+
return hidden_states
|
| 755 |
+
|
| 756 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
| 757 |
+
def __init__(self, in_features):
|
| 758 |
+
super(UNetMidBlock2DCrossAttn, self).__init__()
|
| 759 |
+
self.attentions = nn.ModuleList(
|
| 760 |
+
[Transformer2DModel(in_features, in_features, n_layers=10)]
|
| 761 |
+
)
|
| 762 |
+
self.resnets = nn.ModuleList(
|
| 763 |
+
[
|
| 764 |
+
ResnetBlock2D(in_features, in_features, conv_shortcut=False),
|
| 765 |
+
ResnetBlock2D(in_features, in_features, conv_shortcut=False),
|
| 766 |
+
]
|
| 767 |
+
)
|
| 768 |
+
|
| 769 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
| 770 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 771 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 772 |
+
hidden_states = attn(
|
| 773 |
+
hidden_states,
|
| 774 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 775 |
+
)
|
| 776 |
+
hidden_states = resnet(hidden_states, temb)
|
| 777 |
+
|
| 778 |
+
return hidden_states
|
| 779 |
+
|
| 780 |
+
|
| 781 |
+
class UNet2DConditionModel(nn.Module):
|
| 782 |
+
def __init__(self):
|
| 783 |
+
super(UNet2DConditionModel, self).__init__()
|
| 784 |
+
|
| 785 |
+
# This is needed to imitate huggingface config behavior
|
| 786 |
+
# has nothing to do with the model itself
|
| 787 |
+
# remove this if you don't use diffuser's pipeline
|
| 788 |
+
self.config = namedtuple(
|
| 789 |
+
"config", "in_channels addition_time_embed_dim sample_size"
|
| 790 |
+
)
|
| 791 |
+
self.config.in_channels = 4
|
| 792 |
+
self.config.addition_time_embed_dim = 256
|
| 793 |
+
self.config.sample_size = 128
|
| 794 |
+
|
| 795 |
+
self.conv_in = nn.Conv2d(4, 320, kernel_size=3, stride=1, padding=1)
|
| 796 |
+
self.time_proj = Timesteps()
|
| 797 |
+
self.time_embedding = TimestepEmbedding(in_features=320, out_features=1280)
|
| 798 |
+
self.add_time_proj = Timesteps(256)
|
| 799 |
+
self.add_embedding = TimestepEmbedding(in_features=2816, out_features=1280)
|
| 800 |
+
self.down_blocks = nn.ModuleList(
|
| 801 |
+
[
|
| 802 |
+
DownBlock2D(in_channels=320, out_channels=320),
|
| 803 |
+
CrossAttnDownBlock2D(in_channels=320, out_channels=640, n_layers=2),
|
| 804 |
+
CrossAttnDownBlock2D(
|
| 805 |
+
in_channels=640,
|
| 806 |
+
out_channels=1280,
|
| 807 |
+
n_layers=10,
|
| 808 |
+
has_downsamplers=False,
|
| 809 |
+
),
|
| 810 |
+
]
|
| 811 |
+
)
|
| 812 |
+
self.up_blocks = nn.ModuleList(
|
| 813 |
+
[
|
| 814 |
+
CrossAttnUpBlock2D(
|
| 815 |
+
in_channels=640,
|
| 816 |
+
out_channels=1280,
|
| 817 |
+
prev_output_channel=1280,
|
| 818 |
+
n_layers=10,
|
| 819 |
+
),
|
| 820 |
+
CrossAttnUpBlock2D(
|
| 821 |
+
in_channels=320,
|
| 822 |
+
out_channels=640,
|
| 823 |
+
prev_output_channel=1280,
|
| 824 |
+
n_layers=2,
|
| 825 |
+
),
|
| 826 |
+
UpBlock2D(in_channels=320, out_channels=320, prev_output_channel=640),
|
| 827 |
+
]
|
| 828 |
+
)
|
| 829 |
+
self.mid_block = UNetMidBlock2DCrossAttn(1280)
|
| 830 |
+
self.conv_norm_out = nn.GroupNorm(32, 320, eps=1e-05, affine=True)
|
| 831 |
+
self.conv_act = nn.SiLU()
|
| 832 |
+
self.conv_out = nn.Conv2d(320, 4, kernel_size=3, stride=1, padding=1)
|
| 833 |
+
|
| 834 |
+
def forward(
|
| 835 |
+
self, sample, timesteps, encoder_hidden_states, added_cond_kwargs, **kwargs
|
| 836 |
+
):
|
| 837 |
+
# Implement the forward pass through the model
|
| 838 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 839 |
+
t_emb = self.time_proj(timesteps).to(dtype=sample.dtype)
|
| 840 |
+
|
| 841 |
+
emb = self.time_embedding(t_emb)
|
| 842 |
+
|
| 843 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 844 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 845 |
+
|
| 846 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
| 847 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 848 |
+
|
| 849 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 850 |
+
add_embeds = add_embeds.to(emb.dtype)
|
| 851 |
+
aug_emb = self.add_embedding(add_embeds)
|
| 852 |
+
|
| 853 |
+
emb = emb + aug_emb
|
| 854 |
+
|
| 855 |
+
sample = self.conv_in(sample)
|
| 856 |
+
|
| 857 |
+
# 3. down
|
| 858 |
+
s0 = sample
|
| 859 |
+
sample, [s1, s2, s3] = self.down_blocks[0](
|
| 860 |
+
sample,
|
| 861 |
+
temb=emb,
|
| 862 |
+
)
|
| 863 |
+
|
| 864 |
+
sample, [s4, s5, s6] = self.down_blocks[1](
|
| 865 |
+
sample,
|
| 866 |
+
temb=emb,
|
| 867 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 868 |
+
)
|
| 869 |
+
|
| 870 |
+
sample, [s7, s8] = self.down_blocks[2](
|
| 871 |
+
sample,
|
| 872 |
+
temb=emb,
|
| 873 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 874 |
+
)
|
| 875 |
+
|
| 876 |
+
# 4. mid
|
| 877 |
+
sample = self.mid_block(
|
| 878 |
+
sample, emb, encoder_hidden_states=encoder_hidden_states
|
| 879 |
+
)
|
| 880 |
+
|
| 881 |
+
# 5. up
|
| 882 |
+
sample = self.up_blocks[0](
|
| 883 |
+
hidden_states=sample,
|
| 884 |
+
temb=emb,
|
| 885 |
+
res_hidden_states_tuple=[s6, s7, s8],
|
| 886 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 887 |
+
)
|
| 888 |
+
|
| 889 |
+
sample = self.up_blocks[1](
|
| 890 |
+
hidden_states=sample,
|
| 891 |
+
temb=emb,
|
| 892 |
+
res_hidden_states_tuple=[s3, s4, s5],
|
| 893 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 894 |
+
)
|
| 895 |
+
|
| 896 |
+
sample = self.up_blocks[2](
|
| 897 |
+
hidden_states=sample,
|
| 898 |
+
temb=emb,
|
| 899 |
+
res_hidden_states_tuple=[s0, s1, s2],
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
# 6. post-process
|
| 903 |
+
sample = self.conv_norm_out(sample)
|
| 904 |
+
sample = self.conv_act(sample)
|
| 905 |
+
sample = self.conv_out(sample)
|
| 906 |
+
|
| 907 |
+
return [sample]
|