Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from typing import List | |
| from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
| import google.generativeai as genai | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| import re | |
| genai.configure(api_key="AIzaSyD2o8vjePJb6z8vT_PVe82lVWMD3_cBL0g") | |
| def format_gemini_response(text): | |
| bold_pattern = r"\*\*(.*?)\*\*" | |
| italic_pattern = r"\*(.*?)\*" | |
| code_pattern = r"```(.*?)```" | |
| text = text.replace('\n', '<br>') | |
| formatted_text = re.sub(code_pattern,"<pre><code>\\1</code></pre>",text) | |
| formatted_text = re.sub(bold_pattern, "<b>\\1</b>", formatted_text) | |
| formatted_text = re.sub(italic_pattern, "<i>\\1</i>", formatted_text) | |
| return formatted_text | |
| def predict(message :str , chat_his ,d ) -> str: | |
| model = genai.GenerativeModel("gemini-pro") | |
| his = [] | |
| # for i,j in history: | |
| # his.extend([ | |
| # {"role": "user", "parts": i}, | |
| # {"role": "model", "parts": j}, | |
| # ]) | |
| chat = model.start_chat( | |
| history=his | |
| ) | |
| response = chat.send_message(message) | |
| return format_gemini_response(response.text),chat_his, d | |
| iface = gr.Interface(fn = predict,inputs = ["text","list","json"],outputs = "text") | |
| iface.launch() | |