Spaces:
Sleeping
Sleeping
| from typing import List | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
| from langchain_community.vectorstores import FAISS | |
| import google.generativeai as genai | |
| class GenerateFIASSDB: | |
| def __init__(self,pdf_docs : List[str], save_loc:str, model_embeddings: str = "models/embedding-001")-> None: | |
| self.save_loc = save_loc | |
| self.embedding = model_embeddings | |
| text = self.get_pdf_text(pdf_docs) | |
| text_chunks = self.get_text_chunks(text) | |
| self.get_vector_store(text_chunks) | |
| pass #configure gen ai key from config file | |
| def get_pdf_text(self,pdf_docs : List[str]) -> str: | |
| text = "" | |
| for pdf in pdf_docs: | |
| pdf_reader= PdfReader(pdf) | |
| for page in pdf_reader.pages: | |
| text+= page.extract_text() | |
| return text | |
| def get_text_chunks(self, text : str) -> List: | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| def get_vector_store(self, text_chunks : List) -> None: | |
| embeddings = GoogleGenerativeAIEmbeddings(model = self.embedding) | |
| vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
| vector_store.save_local(self.save_loc) | |
| class DB_Retriever: | |
| def __init__(self, db_loc : str, model_embeddings : str = "models/embedding-001") -> None: | |
| self.db_loc = db_loc | |
| self.embeddings = GoogleGenerativeAIEmbeddings(model = model_embeddings) | |
| self.db = FAISS.load_local(self.db_loc, self.embeddings,allow_dangerous_deserialization = True) | |
| def retrieve(self, query : str) -> List[str]: | |
| # docs = self.db.similarity_search(query) | |
| retriver = self.db.as_retriever() | |
| # output_docs = retriver.invoke(query) | |
| # return output_docs | |
| return retriver | |