Spaces:
Sleeping
Sleeping
File size: 11,712 Bytes
cf33545 87ab18f cf33545 971eb6e cf33545 38def87 fd1094b cf33545 971eb6e cf33545 971eb6e cf33545 87ab18f cf33545 8ea30cd cf33545 8ea30cd cf33545 971eb6e cf33545 971eb6e cf33545 16fe511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
from smolagents import CodeAgent, LiteLLMModel, tool
from pypdf import PdfReader
import google.generativeai as genai
import os
from typing import List
from utils import CURRENT_RESUME_LATEX as LATEX_TEMPLATE
from utils import CURRENT_RESUME_LATEX
import os
import re
import json
from dotenv import load_dotenv
# load_dotenv(".env")
@tool
def header_details(name: str, mobile_number: str, email_id: str, linkedin_profile_link : str, github_link: str) -> str:
"""
Generates header details of the person. It will display the name, mobile_number, email_id, linkedin profile and github profile
Args:
name(str): Name of the candidate
mobile_number(str): Mobile number of the candidate
email_id(str): email_id
linkedin_profile_link(str): Linkedin profile link of the candidate.
github_link(str): github link of the candidate.
Returns:
str: Instruction for the next steps
"""
header_latex = r"""
\begin{center}
\textbf{\Huge \scshape """
header_latex+= name + r"""} \\ \vspace{1pt}
\small""" + mobile_number + r""" $|$ \href{mailto:""" + email_id + r"""}{\underline{"""
header_latex+= email_id + r"""}} $|$
\href{""" + linkedin_profile_link + r"""}{\underline{"""
header_latex+= r"""linkedin}} $|$
\href{""" + github_link + r"""}{\underline{"""
header_latex+=r"""github}}
\end{center}
"""
global CURRENT_RESUME_LATEX
CURRENT_RESUME_LATEX = LATEX_TEMPLATE
CURRENT_RESUME_LATEX += header_latex
response_message = "Now call professional_summary_tool"
return response_message
@tool
def professional_summary(summary: str) -> str:
"""
Creates a Professional Experience summary section of the candidate.
Args:
summary (str): The generated summary should be in less than 4 lines. It should follow the STAR method while generating the summary. It should speak about the experience and the role he is applying for.
(e.g: Accomplished Gen AI Specialist with expertise in machine learning (ML), deep learning (DL), generative AI, and AI Agents, proficient in end-to end development from design to deployment. Skilled in problem-solving, data structures and algorithms (DSA), strong analytical abilities, and debugging complex systems. Passionate about optimizing ML model performance to deliver efficient, high-impact AI solutions. Adept at leveraging the full AI stack to drive innovation and achieve business objectives in fast-paced, technology-focused environments)
Returns:
str: Instruction for the next steps
"""
summary_latex = """
\section{Professional Summary}
"""
summary_latex += rf"""
{{{summary}}}
"""
summary_latex = summary_latex.replace("%","\%")
global CURRENT_RESUME_LATEX
CURRENT_RESUME_LATEX += summary_latex
response_message = "Now call the professional_experience_tool"
return response_message
@tool
def professional_experience(experiences: List[dict]) -> str:
"""
Creates an Experience section for a user.Processes the user work experiences across different companies and generates a string in latex form which will be used in further steps
Args:
experiences (list of dict): A list where each dict contains:
- company_name (required) (str): Name of the company.
- place (Optional) (str): Location of the company. If not mentioned in the resume then keep it as empty string "".
- period (required) (str): Employment duration (e.g., "Jan 2020 - Dec 2022").
- role (required) (str): Title or designation.
- bullet_points (required) (list of str): Key achievements/responsibilities. These points must be in ATS friendly format, quantifying things and following the STAR method(situation, task , action and result)(eg. reduced latency by 5ms, improved accuracy by 50%).
Returns:
str: Instruction for the next steps
"""
Experience_latex = r"""
\section{Professional Experience}
\resumeSubHeadingListStart
"""
for exp in experiences:
company = exp['company_name']
period = exp['period']
place = exp['place']
role = exp['role']
bullet_points = exp['bullet_points']
Experience_latex += rf"""
\resumeSubheading
{{{role}}}{{{period}}}
{{{company}}}{{{place}}}
\resumeItemListStart
"""
for item in bullet_points:
Experience_latex += rf"""
\resumeItem{{{item}}}
"""
Experience_latex += r"""
\resumeItemListEnd
\resumeSubHeadingListEnd
"""
Experience_latex = Experience_latex.replace("%","\%")
global CURRENT_RESUME_LATEX
CURRENT_RESUME_LATEX += Experience_latex
response_message = "Now call the projects tool"
return response_message
@tool
def projects(projects: List[dict]) -> str :
"""
Creates an projects section for a user. Processes the projects and generates a string in latex form which will be used in further steps
Args:
projects (list of dict): A list where each dict contains:
- project_name (required) (str): Name of the project.
- tools_used (required)(list[str]): Tools and technologies used in the project (eg Python, Flask, React, PostgreSQL, Docker). It is a list of strings.
- period (required)(str): Employment duration (e.g., "Jan 2020 - Dec 2022").
- bullet_points (required) (list of str): Key achievements/responsibilities.These points must be in ATS friendly format, quantifying things and following the STAR method(situation, task , action and result)(eg. reduced latency by 5ms, improved accuracy by 50%).
Returns:
str: Instruction for the next steps
"""
Projects_latex = r"""
\section{Projects}
\resumeSubHeadingListStart
"""
for project in projects:
project_name = project['project_name']
period = project['period']
tools = ", ".join(project['tools_used'])
bullet_points = project['bullet_points']
Projects_latex += rf"""
\resumeProjectHeading
{{\textbf{{{project_name}}} \textit{{| {tools}}}}}{{}}
\resumeItemListStart"""
for item in bullet_points:
Projects_latex += rf"""\resumeItem{{{item}}}"""
Projects_latex += r"""\resumeItemListEnd"""
Projects_latex += r"""\resumeSubHeadingListEnd"""
Projects_latex = Projects_latex.replace("%","\%")
global CURRENT_RESUME_LATEX
CURRENT_RESUME_LATEX += Projects_latex
response_message = "Now call the skills tool"
return response_message
@tool
def Education(education : List[dict]) -> str:
"""
Generates an Education section for the candidate. It generates a string which will be processed in the further steps.
Args:
education (list of dict): A list where each dict contains:
- Institute (required) (str): Name of the Institute.
- place (required)(str): Location of the Institute.
- period (required)(str): Education duration (e.g., "Jan 2020 - Dec 2022").
- specialization (required) (str): Specialization of education (e.g., "Bachelors in computer science", "Intermediate", "High School")
Returns:
str: Instruction for the next steps
"""
Education_latex = r"""
\section{Education}
\resumeSubHeadingListStart
"""
for edu in education:
institute_name = edu["Institute"]
place = edu["place"]
period = edu["period"]
specialization = edu["specialization"]
studies = rf"""
\resumeSubheading
{{{institute_name}}}{{{place}}}
{{{specialization}}}{{{period}}}
"""
Education_latex+=studies
Education_latex = Education_latex.replace("%","\%")
global CURRENT_RESUME_LATEX
CURRENT_RESUME_LATEX += Education_latex
response_message = "Now call the achievements tool"
return response_message
@tool
def achievements(achievements : List[str]) -> str:
"""
Generates an achievements section for the candidate's resume in LaTeX format.
Args:
achievements (List[str]): List of achievement strings to be included in the resume
Returns:
str: Instruction for the next steps
"""
achievements_latex = r"""
\section{Achievements}
\resumeItemListStart"""
for achievement in achievements:
achievements_latex += rf"""
\resumeItem{{{achievement}}}"""
achievements_latex += r"""
\resumeItemListEnd
\end{document}
"""
achievements_latex = achievements_latex.replace("%","\%")
global CURRENT_RESUME_LATEX
CURRENT_RESUME_LATEX += achievements_latex
response_message = "Created a file in your pc"
return response_message
@tool
def skills(Programming_languages : List[str], Technologies : List[str], other_skills: dict) -> str:
"""
Generates an technical skills section for the candidate.It includes programming langugage the candidate is aware of, frameworks, developer tools, technologies. It generates a string which will be processed in the further steps.
Args:
Programming_languages (list of strings): contains a list of all the programming languages the candidate is aware of and the new job is expecting. (eg. Python,java,js, HTML, CSS)
Technologies (list of strings): contains a list of all the technologies which are relevant to the Job description as well as the technologies which the candidate is aware of.
other_skills (dict): Contains a list of keyworded arguments specifying more about the skills. Each key is the heading like ML Framworks, Developer tools,etc and the values are a list of strings containing the details. Here is an example (eg. kwargs = {"Frameworks": ["React", "Node.js", "Express.js", "UIKit", "SwiftUI", ".NET Core"],"ML Frameworks & tools":[ TensorFlow, PyTorch, Hugging Face, LangChain, Llama Index, JAX, ML Flow, Chroma DB, CrewAI, Numpy,Databricks, Pandas, Hadoop, Pyspark, scikit-learn]})
Returns:
str: Instruction for the next steps
"""
skills_latex = r"""
\section{Technical Skills}
\begin{itemize}[leftmargin=0.15in, label={}]
\small{\item{
\textbf{Languages}{: """ + ", ".join(Programming_languages) + r"""} \\
\textbf{Technologies}{: """ + ", ".join(Technologies) + r"""}
"""
for category, items in other_skills.items():
skills_latex += rf""" \\
\textbf{{{category}}}{{{": " + ", ".join(items)}}}
"""
skills_latex += r"""
}}
\end{itemize}
"""
global CURRENT_RESUME_LATEX
CURRENT_RESUME_LATEX += skills_latex
response_message = "Now call the achievements_latex"
return response_message
def create_resume_agent(prompt: str):
try:
model = LiteLLMModel(model_id="gemini/gemini-2.0-flash-exp",
api_key=os.getenv("GOOGLE_API_KEY"))
resume_agent =CodeAgent(
tools = [header_details,professional_summary,professional_experience,projects,skills,Education,achievements],
model = model
)
# print(resume_agent)
resume_agent.run(prompt)
global CURRENT_RESUME_LATEX
# print(CURRENT_RESUME_LATEX)
CURRENT_RESUME_LATEX = re.sub(r'\bextbf\s*{(.*?)}', r'\\textbf{\1}', CURRENT_RESUME_LATEX)
return CURRENT_RESUME_LATEX
except Exception as e:
return e |