File size: 4,525 Bytes
8ff90fd 73c2c7e 8ff90fd 73c2c7e 8ff90fd 73c2c7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import torch
# Load model
model_id = "ibm-granite/granite-3b-code-instruct" # Replace with actual granite model if different
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.float16
)
# Load sentiment analysis model
sentiment_analyzer = pipeline("sentiment-analysis")
# Simulated citizen profiles
user_profiles = {
"1001": {"location": "Hyderabad", "issues": ["traffic", "air pollution"]},
"1002": {"location": "Delhi", "issues": ["waste management", "noise"]},
}
# Store submitted feedback during session
submitted_data = []
# Chat Function (ChatGPT-style)
def chat_fn(message, history):
full_prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": message}],
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=200)
reply = tokenizer.decode(outputs[0], skip_special_tokens=True).split("assistant")[-1].strip()
return reply
# Sentiment Analysis
def analyze_sentiment(text):
result = sentiment_analyzer(text)[0]
return f"{result['label']} ({result['score']*100:.2f}%)"
# Live Feedback β Dashboard
def collect_and_plot_feedback(comment, category):
sentiment = sentiment_analyzer(comment)[0]["label"]
submitted_data.append({"Category": category, "Sentiment": sentiment})
df = pd.DataFrame(submitted_data)
summary = df.groupby(['Category', 'Sentiment']).size().unstack(fill_value=0)
fig, ax = plt.subplots(figsize=(8, 5))
summary.plot(kind='bar', stacked=True, ax=ax, colormap="Set2")
plt.title("Live Citizen Sentiment by Category")
plt.ylabel("Count")
plt.tight_layout()
return f"Recorded sentiment: {sentiment}", fig
# Personalized Contextual Assistant
def personalized_response(user_id, query):
profile = user_profiles.get(user_id)
if not profile:
return "User profile not found. Please check your user ID."
context = f"User from {profile['location']} concerned with: {', '.join(profile['issues'])}. Question: {query}"
input_tokens = tokenizer(context, return_tensors="pt").to(model.device)
output = model.generate(**input_tokens, max_new_tokens=150)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Build Gradio App
with gr.Blocks(title="Citizen AI β Intelligent Citizen Engagement Platform") as demo:
gr.Markdown("## π§ Citizen AI β Intelligent Citizen Engagement Platform")
with gr.Tab("π€ Chat Assistant"):
gr.ChatInterface(
fn=chat_fn,
title="π§ Ask Citizen AI",
theme="soft",
chatbot=gr.Chatbot(label="Citizen Chat"),
textbox=gr.Textbox(placeholder="Type your question here...", show_label=False),
retry_btn="π Retry",
clear_btn="ποΈ Clear",
submit_btn="β€ Send"
)
with gr.Tab("π Sentiment Analysis"):
sentiment_input = gr.Textbox(label="Enter citizen comment")
sentiment_output = gr.Textbox(label="Sentiment Result")
analyze_btn = gr.Button("Analyze")
analyze_btn.click(analyze_sentiment, inputs=sentiment_input, outputs=sentiment_output)
with gr.Tab("π Live Dashboard"):
gr.Markdown("### π¬ Submit Feedback and Watch Sentiment Grow Live")
comment_input = gr.Textbox(label="Citizen Feedback")
category_input = gr.Dropdown(choices=["Healthcare", "Sanitation", "Transport", "Education"], label="Category")
submit_button = gr.Button("Submit Feedback")
sentiment_display = gr.Textbox(label="Detected Sentiment")
live_chart = gr.Plot(label="Live Sentiment Chart")
submit_button.click(collect_and_plot_feedback, inputs=[comment_input, category_input], outputs=[sentiment_display, live_chart])
with gr.Tab("𧬠Personalized AI Response"):
uid_input = gr.Textbox(label="User ID (e.g., 1001)")
query_input = gr.Textbox(label="Your query")
response_output = gr.Textbox(label="AI Response")
personal_btn = gr.Button("Generate Personalized Response")
personal_btn.click(personalized_response, inputs=[uid_input, query_input], outputs=response_output)
demo.launch(share=True)
|