Spaces:
Sleeping
Sleeping
Upload main.py
Browse files
main.py
CHANGED
@@ -4,16 +4,16 @@ import uvicorn
|
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
app = FastAPI()
|
6 |
|
7 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
-
n_gpu = torch.cuda.device_count()
|
9 |
-
torch.cuda.get_device_name(0)
|
10 |
tokenizer = AutoTokenizer.from_pretrained("SuiGio/roberta_pubmesh")
|
11 |
model = AutoModelForSequenceClassification.from_pretrained("SuiGio/roberta_pubmesh")
|
12 |
|
13 |
-
try:
|
14 |
-
|
15 |
-
except:
|
16 |
-
|
17 |
|
18 |
|
19 |
label_names= [ "Anatomy [A]",
|
@@ -73,8 +73,8 @@ user_text = " BACKGROUND: The distal GI microbiota of hospitalized preterm neona
|
|
73 |
|
74 |
def get_preds(user_text, model=model, tokenizer=tokenizer, label_names=label_names):
|
75 |
inputs = tokenizer(user_text, padding=True, truncation=True, max_length=128, return_tensors="pt")
|
76 |
-
input_ids = inputs["input_ids"]
|
77 |
-
attention_mask = inputs["attention_mask"]
|
78 |
model.eval()
|
79 |
|
80 |
# Forward pass with the model
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
app = FastAPI()
|
6 |
|
7 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
# n_gpu = torch.cuda.device_count()
|
9 |
+
# torch.cuda.get_device_name(0)
|
10 |
tokenizer = AutoTokenizer.from_pretrained("SuiGio/roberta_pubmesh")
|
11 |
model = AutoModelForSequenceClassification.from_pretrained("SuiGio/roberta_pubmesh")
|
12 |
|
13 |
+
# try:
|
14 |
+
# model.cuda()
|
15 |
+
# except:
|
16 |
+
# pass
|
17 |
|
18 |
|
19 |
label_names= [ "Anatomy [A]",
|
|
|
73 |
|
74 |
def get_preds(user_text, model=model, tokenizer=tokenizer, label_names=label_names):
|
75 |
inputs = tokenizer(user_text, padding=True, truncation=True, max_length=128, return_tensors="pt")
|
76 |
+
input_ids = inputs["input_ids"]#.to(device)
|
77 |
+
attention_mask = inputs["attention_mask"]#.to(device)
|
78 |
model.eval()
|
79 |
|
80 |
# Forward pass with the model
|