import os import json import numpy as np import torch from PIL import Image, ImageDraw import gradio as gr from openai import OpenAI from geopy.geocoders import Nominatim from staticmap import StaticMap, CircleMarker, Polygon from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline import spaces import logging from pydantic import BaseModel, ValidationError, Field from typing import List, Union # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Initialize APIs openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY']) geolocator = Nominatim(user_agent="geoapi") # Define Pydantic models for GeoJSON validation class Geometry(BaseModel): type: str coordinates: Union[List[List[float]], List[List[List[float]]]] class Feature(BaseModel): type: str = "Feature" properties: dict geometry: Geometry class FeatureCollection(BaseModel): type: str = "FeatureCollection" features: List[Feature] # Function to fetch coordinates @spaces.GPU def get_geo_coordinates(location_name): try: location = geolocator.geocode(location_name) if location: return [location.longitude, location.latitude] return None except Exception as e: logger.error(f"Error fetching coordinates for {location_name}: {e}") return None # Function to process OpenAI chat response @spaces.GPU def process_openai_response(query): response = openai_client.chat.completions.create( model="gpt-4o-mini", messages=[ { "role": "system", "content": "You are a skilled assistant answering geographical and historical questions in JSON format." }, { "role": "user", "content": query } ], temperature=1, max_tokens=2048, top_p=1, frequency_penalty=0, presence_penalty=0, response_format={"type": "json_object"} ) return json.loads(response.choices[0].message.content) # Generate GeoJSON from OpenAI response @spaces.GPU def generate_geojson(response): feature_type = response['output']['feature_representation']['type'] city_names = response['output']['feature_representation']['cities'] properties = response['output']['feature_representation']['properties'] coordinates = [] for city in city_names: coord = get_geo_coordinates(city) if coord: coordinates.append(coord) if feature_type == "Polygon": coordinates.append(coordinates[0]) # Close the polygon geojson_data = { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": properties, "geometry": { "type": feature_type, "coordinates": [coordinates] if feature_type == "Polygon" else coordinates } } ] } # Validate the generated GeoJSON using Pydantic try: validated_geojson = FeatureCollection(**geojson_data) logger.info("GeoJSON validation successful.") return validated_geojson.dict() except ValidationError as e: logger.error(f"GeoJSON validation failed: {e}") raise # Generate static map image @spaces.GPU def generate_static_map(geojson_data, invisible=False): m = StaticMap(600, 600) logger.info(f"GeoJSON data: {geojson_data}") for feature in geojson_data["features"]: geom_type = feature["geometry"]["type"] coords = feature["geometry"]["coordinates"] if geom_type == "Point": m.add_marker(CircleMarker((coords[0][0], coords[0][1]), '#1C00ff00' if invisible else 'blue', 1000)) elif geom_type in ["MultiPoint", "LineString"]: for coord in coords: m.add_marker(CircleMarker((coord[0], coord[1]), '#1C00ff00' if invisible else 'blue', 1000)) elif geom_type in ["Polygon", "MultiPolygon"]: for polygon in coords: m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], '#1C00ff00' if invisible else 'blue', 3)) return m.render() # ControlNet pipeline setup controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16) pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16 ) pipeline.to('cuda') @spaces.GPU def make_inpaint_condition(init_image, mask_image): init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0 mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0 assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size" init_image[mask_image > 0.5] = -1.0 # set as masked pixel init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2) init_image = torch.from_numpy(init_image) return init_image @spaces.GPU def generate_satellite_image(init_image, mask_image, prompt): control_image = make_inpaint_condition(init_image, mask_image) result = pipeline( prompt=prompt, image=init_image, mask_image=mask_image, control_image=control_image, strength=0.42, guidance_scale=62 ) return result.images[0] # Gradio UI @spaces.GPU def handle_query(query): response = process_openai_response(query) geojson_data = generate_geojson(response) map_image = generate_static_map(geojson_data) empty_map_image = generate_static_map(geojson_data, invisible=True) difference = np.abs(np.array(map_image.convert("RGB")) - np.array(empty_map_image.convert("RGB"))) threshold = 10 mask = (np.sum(difference, axis=-1) > threshold).astype(np.uint8) * 255 mask_image = Image.fromarray(mask, mode="L") satellite_image = generate_satellite_image( empty_map_image, mask_image, response['output']['feature_representation']['properties']['description'] ) return map_image, empty_map_image, satellite_image, mask_image, response def update_query(selected_query): return selected_query query_options = [ "Area covering south asian subcontinent", "Due to considerable rainfall in the up- and mid- stream areas of Kala Oya, the Rajanganaya reservoir is now spilling at a rate of 17,000 cubic feet per second, the department said." ] with gr.Blocks() as demo: with gr.Row(): selected_query = gr.Dropdown(label="Select Query", choices=query_options, value=query_options[-1]) query_input = gr.Textbox(label="Enter Query", value=query_options[-1]) selected_query.change(update_query, inputs=selected_query, outputs=query_input) submit_btn = gr.Button("Submit") with gr.Row(): map_output = gr.Image(label="Map Visualization") empty_map_output = gr.Image(label="Empty Visualization") with gr.Row(): satellite_output = gr.Image(label="Generated Satellite Image") mask_output = gr.Image(label="Mask") image_prompt = gr.Textbox(label="Image Prompt Used") submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, empty_map_output, satellite_output, mask_output, image_prompt]) if __name__ == "__main__": demo.launch()